摘 要
本论文旨在设计与实现一个基于用户需求的个性化新闻推荐系统。随着互联网的普及和信息爆炸式增长,传统的新闻获取方式已不能满足用户的个性化需求。因此,本研究通过引入Python爬虫技术,结合后台管理系统和资讯新闻APP的前端开发技术,以及后端采用Spring+SpringMVC+Mybatis框架和MySQL数据库技术,旨在为用户提供更加个性化的新闻推荐服务。
论文的主要工作包括以下几个方面:首先,利用Python爬虫技术从各大新闻网站收集新闻数据,并建立相应的数据集;其次,通过分析用户的历史浏览记录、兴趣标签等信息,构建用户画像,以了解用户的兴趣和需求;然后,采用基于内容的推荐算法和协同过滤算法等,结合用户画像和新闻内容特征,实现个性化的新闻推荐;最后,在后台管理系统中提供友好易用的界面,方便管理员对新闻数据进行管理和维护。
本论文的创新点在于结合Python爬虫技术和多种前后端开发技术,构建了一个全面、高效的个性化新闻推荐系统。实验结果表明,该系统能够根据用户的实际需求,推荐符合用户兴趣的新闻内容,并提升用户的阅读体验。
关键词:个性化新闻推荐系统,Python爬虫技术,后台管理系统,前端开发,后端开发,数据库技术
Abstract
This paper aims to design and implement a personalized news recommendation system based on user needs. With the popularity of the Internet and the explosive growth of information, the traditional way of news acquisition can no longer meet the personalized needs of users. Therefore, this study introduces the Python crawler technology, combined with the front-end development technology of the background management system and the information news APP, and adopts the back-end Spring + SpringMVC + Mybatis framework and MySQL database technology, aiming to provide users with more personalized news recommendation services.
The main work of the paper includes the following aspects: firstly, collect news data from various news websites and establish corresponding data sets; secondly, build the user portrait to understand the interests and needs of the user, and then; Finally, provide the friendly interface in the background management system to facilitate the administrator to manage and maintain the news data.
The innovation point of this paper is to combine Python crawler technology and various front and rear end development technology to build a comprehensive and efficient personalized news recommendation system. The experimental results show that the system can recommend news content that meets users 'interests according to their actual needs, and improve users' reading experience.
Key words: personalized news recommendation system, Python crawler technology, background management system, front-end development, back-end development, database technology