基于遗传算法的人脸识别技术
【摘要】 在日常生活中,有很多场景都会用到人的身份识别。人脸识别因为其普遍性,可采集性和接受程度都较高,成为了众多身份识别中的主流。
遗传算法具有全局搜索能力,本文通过遗传算法,将人脸的检测和识别进行算法优化,以减少计算量的方式提高人脸的识别效果,利用遗传算法对其特征值的提取运用遗传算法进行优化。通过对比实验结果表明,使用该算法进行优化的人脸识别方法在特征值没有明显的提升的情况下,较大的提高了人脸的检测率。
【关键词】 人脸检测,人脸识别,遗传算法,级联分类器
Face recognition technology based on genetic algorithm
【Abstract】 In daily life, there are many scenes that use people's identification. Because of its universality, collectability and acceptability, face recognition has become the mainstream of many identity recognition. Genetic algorithm has the ability of global search. In this paper, according to the general idea of face detection and recognition, aiming at improving the detection and recognition effect of face, genetic algorithm is used to optimize the extraction threshold of its characteristic value. The experimental results show that the face recognition method optimized by this algorithm can greatly improve the face detection rate when the eigenvalues are not significantly improved.
【Key Words】 Face recognition,Face detection,Genetic algorithm (ga),Cascade classifiers
图目录
图2.1 OpenCV中使用的Haar特征
图2.2 决策树图
图2.3 Roy的人脸检测过程
图2.4 Bob的人脸检测过程
图3.2 遗传算法优化的Eigenface流程
图3.3 2DPCA-PCA遗传算法适应度曲线
图3.4 2DPCA-PCA遗传算法适应度曲线2
图3.4 遗传算法优化的Eigenface流程