设计 任务书 文档 开题 答辩 说明书 格式 模板 外文 翻译 范文 资料 作品 文献 课程 实习 指导 调研 下载 网络教育 计算机 网站 网页 小程序 商城 购物 订餐 电影 安卓 Android Html Html5 SSM SSH Python 爬虫 大数据 管理系统 图书 校园网 考试 选题 网络安全 推荐系统 机械 模具 夹具 自动化 数控 车床 汽车 故障 诊断 电机 建模 机械手 去壳机 千斤顶 变速器 减速器 图纸 电气 变电站 电子 Stm32 单片机 物联网 监控 密码锁 Plc 组态 控制 智能 Matlab 土木 建筑 结构 框架 教学楼 住宅楼 造价 施工 办公楼 给水 排水 桥梁 刚构桥 水利 重力坝 水库 采矿 环境 化工 固废 工厂 视觉传达 室内设计 产品设计 电子商务 物流 盈利 案例 分析 评估 报告 营销 报销 会计
 首 页 机械毕业设计 电子电气毕业设计 计算机毕业设计 土木工程毕业设计 视觉传达毕业设计 理工论文 文科论文 毕设资料 帮助中心 设计流程 
垫片
您现在所在的位置:首页 >>计算机毕业设计 >> 文章内容
                 
垫片
   我们提供全套毕业设计和毕业论文服务,联系微信号:biyezuopin QQ:2922748026   
基于Java+MySQL的关于内容的图像检索系统 毕业论文+项目源码及数据库文件
文章来源:www.biyezuopin.vip   发布者:毕业作品网站  

目录
基于内容的图像检索系统 1
主要任务: 1
详细功能描述: 2
摘要 2
一、系统设计 3
1.1 主要开发工具 3
1.2 实验方法与步骤 3
1.2.1 图像检索系统工作流程 3
1.2.2 图像检索系统框架 4
1.2.3 系统设计 6
二、所采用算法思想 9
2.1 图像预处理 9
2.2 mid 9
2.2.1 图像颜色特征 9
= 11
2.2.2 图像纹理特征 11
2.2.3 灰度共生矩阵法 12
2.2.4 形状不变矩法 14
= ∑ 14
2.2.5 边缘方向直方图法 15
其中 = { 17
1 或 = 0 17
min(, ) / ∑ 17
=1 17
=1 18
=1 18
=1 18
三、详细实现过程 18
3.1 图像特征数据库设计说明 18
3.2 Java 包与类的设计 20
四、实验结果分析 24
五、实训总结和心得 34
六、参考文献 34
基于内容的图像检索系统
主要任务:
设计与实现一个基于内容的图像检索系统,包括前端显示和后台服务器,后台服务器采用数据库存放图像特征数据,前台输入一个图片检索系统中对应的图片并进行显示
详细功能描述:
实现基于颜色信息的图像检索,可通过颜色直方图、颜色矩、颜色一致性矢量等方法来实现。
实现基于纹理特征的图像检索,可从四个方面进行:统计法、结构法、模型法、频谱法。
实现基于形状特征的图像检索,可分别从图像的边缘信息和区域信息来实现。
实现基于综合信息的图像检索。
预期成果或目标:
完成基于三种图像特征(颜色、纹理、形状)5 种相似度量算法的图像检索系统
指导老师评语:
指导教师签字:
摘要
随着数字化信息应用领域的不断深入和扩展,大规模图像集开始不断涌现。面对庞大的图像数据集,需要建立有效的图像描述、管理和检索机制。基于内容的图像检索顺应发展的需求,在图像资源管理方面的重要性日益突出。本文围绕基于内容的图像检索的关键技术展开讨论,重点研究了图像内容的描述方法、数据库索引技术、相似性匹配规则以及相关反馈机制。完成的工作主要包括:(1)构建图像特征数据库。以 caltech 标准图像库作为研究对象,结合时域和频域提取图像的颜色、纹理和形状特征作为图像内容的描述,构建特征数据库。提取的特征主要包括 HSI 中心矩法、直方图相交法、灰度-梯度共生矩阵纹理、和边缘投影直方图。(2)建立索引结构模型与特征匹配规则。初始检索设计了两种检索方式供用户选择,一种是通过建立数据库索引树结构 Kd-tree 进行近邻查询,另一种是线性检索,根据相似性度量准则计算示例图像的特征向量与特征数据库中特征向量的距离,按照相似程度输出与示例图像有相近特征的图像。(3)基于 IDEA 和 Sqlyog 软件平台,设计并实现了包含特征提取、数据库、索引匹配、查询显示和相关反馈五个功能模块的基于内容的图像检索实验系统。(4)利用标准图像库对实现的图像检索系统的功能进行测试。针对提取的不同特征进行实验,比较其检索效率,验证了有效的图像内容描述方法。
关键词: 图像检索; 基于内容; 图像索引
AbstractWith the continuous deepening and expansion of the application field of digital information, large-scale image collections began to emerge. Facing the huge image data set, it is necessary to establish an effective image description, management and retrieval mechanism. Content-based image retrieval conforms to the needs of development, and its importance in image resource management has become increasingly prominent. This paper discusses the key technologies of content-based image retrieval, focusing on the description methods of image content, database indexing technology, similarity matching rules and related feedback mechanisms. The completed work mainly includes:Construct an image feature database. Taking caltech standard image library as the research object, combining the time domain and frequency domain to extract the color, texture and shape features of the image as the description of the image content, and construct the feature database. The extracted features mainly include HSI central moment method, histogram intersection method, gray-gradient co-occurrence matrix texture, and edge projection histogram.Establish index structure model and feature matching rules. The initial retrieval is designed with two retrieval methods for users to choose. One is to perform nearest neighbor query by establishing a database index tree structure Kd-tree, and the other is linear retrieval, which calculates the feature vector of the sample image and the feature database according to the similarity measurement criterion. The distance of the feature vector, according to the degree of similarity, output images with similar features to the example image.Based on IDEA and Sqlyog software platform, a content-based image retrieval experiment system including five functional modules, including feature extraction, database, index matching, query display and related feedback, was designed and implemented.Use the standard image library to test the functions of the realized image retrieval system. Experiments on the different extracted features, comparing their retrieval efficiency, verify the effective image content description method.Keywords:image retrieval;content-based;image index























  全套毕业设计论文现成成品资料请咨询微信号:biyezuopin QQ:2922748026     返回首页 如转载请注明来源于www.biyezuopin.vip  

                 

打印本页 | 关闭窗口
本类最新文章
基于Python的在线自主考试系 基于腾讯云的个人知识库管理系统 基于Android的酒店预定系统
基于matlab变频器控制交流电 基于微信小程序的家校联动平台管理 基于时频分析与自适应滤波技术的多
| 关于我们 | 友情链接 | 毕业设计招聘 |

Email:biyeshejiba@163.com 微信号:biyezuopin QQ:2922748026  
本站毕业设计毕业论文资料均属原创者所有,仅供学习交流之用,请勿转载并做其他非法用途.如有侵犯您的版权有损您的利益,请联系我们会立即改正或删除有关内容!