设计 任务书 文档 开题 答辩 说明书 格式 模板 外文 翻译 范文 资料 作品 文献 课程 实习 指导 调研 下载 网络教育 计算机 网站 网页 小程序 商城 购物 订餐 电影 安卓 Android Html Html5 SSM SSH Python 爬虫 大数据 管理系统 图书 校园网 考试 选题 网络安全 推荐系统 机械 模具 夹具 自动化 数控 车床 汽车 故障 诊断 电机 建模 机械手 去壳机 千斤顶 变速器 减速器 图纸 电气 变电站 电子 Stm32 单片机 物联网 监控 密码锁 Plc 组态 控制 智能 Matlab 土木 建筑 结构 框架 教学楼 住宅楼 造价 施工 办公楼 给水 排水 桥梁 刚构桥 水利 重力坝 水库 采矿 环境 化工 固废 工厂 视觉传达 室内设计 产品设计 电子商务 物流 盈利 案例 分析 评估 报告 营销 报销 会计
 首 页 机械毕业设计 电子电气毕业设计 计算机毕业设计 土木工程毕业设计 视觉传达毕业设计 理工论文 文科论文 毕设资料 帮助中心 设计流程 
垫片
您现在所在的位置:首页 >>计算机毕业设计 >> 文章内容
                 
垫片
   我们提供全套毕业设计和毕业论文服务,联系微信号:biyezuopin QQ:2922748026   
汽车自动驾驶驶过交叉路口方法的对比研究 毕业论文+开题报告+过程检查记录表+Python源码及数据
文章来源:www.biyezuopin.vip   发布者:毕业作品网站  

摘 要
在自动驾驶领域,控制汽车通过路口是一件非常有挑战的事情,它需要兼顾安全和效率。我们的目标是让自动驾驶汽车不与其他汽车碰撞,同时让汽车通过路口的时间尽量短。在本文中,我们用传统方法和强化学习的方法来控制自动驾驶汽车通过无红绿灯路口,测算了它们的成功率、碰撞率、平均通过时间、车流车辆平均制动时间,并将它们做了比较。实验结果表明,传统方法的安全性远远超过强化学习方法,可保证不碰撞,但行驶方式过于保守;而强化学习方法能帮助我们在低碰撞率的条件下更快速地通过路口,大幅缩短了平均通行时间。我们目前实现的传统算法及强化学习方法虽然都并不够完美,但它们提供的解决方案为我们分别指出了这两种方法的优缺点,也为未来的研究指明了方向。
关键词: 自动驾驶;强化学习;安全;导航
Comparative Study of Controlling Autonomous Vehicles through Intersections ABSTRACT
ABSTRACT
In the field of autonomous driving, controlling vehicles through intersections is an ex- tremely challenging task. It needs to balance safety and efficiency. Our goal is to keep au- tonomous vehicles from colliding with other cars while letting vehicles pass through the inter- sections as fast as possible. This paper uses traditional methods and deep reinforcement learn- ing methods to control autonomous vehicles to pass through traffic-free intersections, measures their success rate, collision rate, average transit time, and average brake time. We compare the metrics above, and the experimental results show that the safety of the traditional method far exceeds the reinforcement learning method, which can prevent autonomous vehicles from col- liding with others, but its driving method is too conservative. The deep reinforcement learning method can help us dramatically reduce the average transit time with a low collision rate. Al- though the traditional method and the reinforcement learning method we currently implement are not perfect enough, the solutions provided by the methods above point out some advantages and disadvantages of the two methods, respectively, and also illustrate the direction for future research.
Keywords: Autonomous Driving; Deep Reinforcement Learning; Safety; Navigation
目录
第一章 引言 1
第二章 研究方法 2
2.1TTC 算法 2
2.2PRM 算法 3
2.3强化学习 4
2.4状态的表示 5
2.5动作集合 6
2.6转移函数 6
2.7奖赏函数 6
2.8DQN 算法 6
2.9PPO 算法 8
第三章 实验 11
3.1实验内容 11
3.2实验环境 11
3.3评估标准 12
3.4参数设置 13
第四章 结果 16
4.1车流量变化下的指标 16
4.2行驶路线变化下的指标 17
第五章 总结 20
参考文献 23
致谢 25
插图目录
2-1TTC 计算方法示意图 3
2-2状态表示示意图 5
2-3用于标准化状态空间的神经网络 7
2-4将标准化状态空间映射为 Q 值的神经网络 8
2-5将标准化状态空间映射为 V 值的神经网络 8
2-6PPO 神经网络模型 10
3-1左转弯、直行、右转弯通过路口示意图 11
3-2各组件之间的数据流动关系 12
3-3不同 TTC 阈值下的指标 14
4-1 直行场景下,不同车流量的指标 16
表格目录
3-1SUMO 参数表 13
3-2PRM 参数表 15
3-3DQN 训练参数表 15
3-4PPO 训练参数表 15
4-1车流量为 0.2 辆/s 的条件下不同行驶路线的指标 18
4-2车流量为 0.6 辆/s 的条件下不同行驶路线的指标 19










  全套毕业设计论文现成成品资料请咨询微信号:biyezuopin QQ:2922748026     返回首页 如转载请注明来源于www.biyezuopin.vip  

                 

打印本页 | 关闭窗口
本类最新文章
基于Python的在线自主考试系 基于腾讯云的个人知识库管理系统 基于Android的酒店预定系统
基于matlab变频器控制交流电 基于微信小程序的家校联动平台管理 基于时频分析与自适应滤波技术的多
| 关于我们 | 友情链接 | 毕业设计招聘 |

Email:biyeshejiba@163.com 微信号:biyezuopin QQ:2922748026  
本站毕业设计毕业论文资料均属原创者所有,仅供学习交流之用,请勿转载并做其他非法用途.如有侵犯您的版权有损您的利益,请联系我们会立即改正或删除有关内容!