What is android
Android is a software stack for mobile devices that includes an operating system, middleware and key applications. The android sdk provides the tools and APIs necessary to begin developing applications on the Android platform using the Java programming language.
Features
Application framework: enabling reuse and replacement of components
Dalvik virtual machine: optimized for mobile devices
Integrated browser: based on the open source webkit engine
Optimized graphics: powered by a custom 2D graphics library; 3D graphics based on the OpenGL ES 1.0 specification (hardware acceleration optional)
SQLite: for structured data storage
Media support: for common audio, video, and still image formats (MPEG4, H.264, MP3, AAC, AMR, JPG, PNG, GIF) ,GSM Telephony (hardware dependent) Bluetooth, EDGE, 3G, and WiFi (hardware dependent) Camera, GPS, compass, and accelerometer (hardware dependent)
Rich development environment: including a device emulator, tools for debugging, memory and performance profiling, and a plugin for the Eclipse IDE
Android Architecture
The following diagram shows the major components of the Android operating system. Each section is described in more detail below.
Applications
Android will ship with a set of core applications including an email client, SMS program, calendar, maps, browser, contacts, and others. All applications are written using the Java programming language.
Application Framework
By providing an open development platform, Android offers developers the ability to build extremely rich and innovative applications. Developers are free to take advantage of the device hardware, access location information, run background services, set alarms, add notifications to the status bar, and much, much more.
Developers have full access to the same framework APIs used by the core applications. The application architecture is designed to simplify the reuse of components; any application can publish its capabilities and any other application may then make use of those capabilities (subject to security constraints enforced by the framework). This same mechanism allows components to be replaced by the user.
Underlying all applications is a set of services and systems, including:
A rich and extensible set of views that can be used to build an application, including lists, grids, text boxes, buttons, and even an embeddable web browser
content providers that enable applications to access data from other applications (such as Contacts), or to share their own data
A resource manager, providing access to non-code resources such as localized strings, graphics, and layout files
A notification manager that enables all applications to display custom alerts in the status bar
An activity manager that manages the lifecycle of applications and provides a common navigation back stack
Libraries
Android includes a set of C/C++ libraries used by various components of the Android system. These capabilities are exposed to developers through the Android application framework. Some of the core libraries are listed below:
System C library - a BSD-derived implementation of the standard C system library (libc); tuned for embedded Linux-based devices
Media Libraries - based on PacketVideo's OpenCORE; the libraries support playback and recording of many popular audio and video formats, as well as static image files, including MPEG4, H.264, MP3, AAC, AMR, JPG, and PNG
Surface Manager - manages access to the display subsystem and seamlessly composites 2D and 3D graphic layers from multiple applications
LibWebCore - a modern web browser engine which powers both the Android browser and an embeddable web view
SGL - the underlying 2D graphics engine
3D libraries - an implementation based on OpenGL ES 1.0 APIs; the libraries use either hardware 3D acceleration (where available) or the included, highly optimized 3D software rasterizer
FreeType - bitmap and vector font rendering
SQLite - a powerful and lightweight relational database engine available to all applications
Linux Kernel
Android relies on Linux version 2.6 for core system services such as security, memory management, process management, network stack, and driver model. The kernel also acts as an abstraction layer between the hardware and the rest of the software stack.
Application Fundamentals
Android applications are written in the Java programming language. The Android SDK tools compile the code—along with any data and resource files—into an Android package, an archive file with an apk suffix. All the code in a single apk file is considered to be one application and is the file that Android-powered devices use to install the application.
Once installed on a device, each Android application lives in its own security sandbox:
The Android operating system is a multi-user Linux system in which each application is a different user.
By default, the system assigns each application a unique Linux user ID (the ID is used only by the system and is unknown to the application). The system sets permissions for all the files in an application so that only the user ID assigned to that application can access them.
Each process has its own virtual machine (VM), so an application's code runs in isolation from other applications.
By default, every application runs in its own Linux process. Android starts the process when any of the application's components need to be executed, then shuts down the process when it's no longer needed or when the system must recover memory for other applications.
In this way, the Android system implements the principle of least privilege. That is, each application, by default, has access only to the components that it requires to do its work and no more. This creates a very secure environment in which an application cannot access parts of the system for which it is not given permission.
However, there are ways for an application to share data with other applications and for an application to access system services:
It's possible to arrange for two applications to share the same Linux user ID, in which case they are able to access each other's files. To conserve system resources, applications with the same user ID can also arrange to run in the same Linux process and share the same VM (the applications must also be signed with the same certificate).
An application can request permission to access device data such as the user's contacts, SMS messages, the mountable storage (SD card), camera, Bluetooth, and more. All application permissions must be granted by the user at install time.
That covers the basics regarding how an Android application exists within the system. The rest of this document introduces you to:
The core framework components that define your application.
The manifest file in which you declare components and required device features for your application.
Resources that are separate from the application code and allow your application to gracefully optimize its behavior for a variety of device configurations.
Application Components
Application components are the essential building blocks of an Android application. Each component is a different point through which the system can enter your application. Not all components are actual entry points for the user and some depend on each other, but each one exists as its own entity and plays a specific role—each one is a unique building block that helps define your application's overall behavior.
There are four different types of application components. Each type serves a distinct purpose and has a distinct lifecycle that defines how the component is created and destroyed.
Here are the four types of application components:
Activities
An activity represents a single screen with a user interface. For example, an email application might have one activity that shows a list of new emails, another activity to compose an email, and another activity for reading emails. Although the activities work together to form a cohesive user experience in the email application, each one is independent of the others. As such, a different application can start any one of these activities (if the email application allows it). For example, a camera application can start the activity in the email application that composes new mail, in order for the user to share a picture.
An activity is implemented as a subclass of activity and you can learn more about it in the activity developer guide.
Services
A service is a component that runs in the background to perform long-running operations or to perform work for remote processes. A service does not provide a user interface. For example, a service might play music in the background while the user is in a different application, or it might fetch data over the network without blocking user interaction with an activity. Another component, such as an activity, can start the service and let it run or bind to it in order to interact with it.
Content providers
A content provider manages a shared set of application data. You can store the data in the file system, an SQLite database, on the web, or any other persistent storage location your application can access. Through the content provider, other applications can query or even modify the data (if the content provider allows it). For example, the Android system provides a content provider that manages the user's contact information. As such, any application with the proper permissions can query part of the content provider to read and write information about a particular person.
Content providers are also useful for reading and writing data that is private to your application and not shared. A content provider is implemented as a subclass of and must implement a standard set of APIs that enable other applications to perform transactions. For more information, see the developer guide.
Broadcast receivers
A broadcast receiver is a component that responds to system-wide broadcast announcements. Many broadcasts originate from the system—for example, a broadcast announcing that the screen has turned off, the battery is low, or a picture was captured. Applications can also initiate broadcasts—for example, to let other applications know that some data has been downloaded to the device and is available for them to use. Although broadcast receivers don't display a user interface, they may to alert the user when a broadcast event occurs. More commonly, though, a broadcast receiver is just a "gateway" to other components and is intended to do a very minimal amount of work. For instance, it might initiate a service to perform some work based on the event.
A broadcast receiver is implemented as a subclass of broadcastreceiver and each broadcast is delivered as an itent object. For more information, see the broadcastreceiver class.
A unique aspect of the Android system design is that any application can start another application’s component. For example, if you want the user to capture a photo with the device camera, there's probably another application that does that and your application can use it, instead of developing an activity to capture a photo yourself. You don't need to incorporate or even link to the code from the camera application. Instead, you can simply start the activity in the camera application that captures a photo. When complete, the photo is even returned to your application so you can use it. To the user, it seems as if the camera is actually a part of your application.
When the system starts a component, it starts the process for that application (if it's not already running) and instantiates the classes needed for the component. For example, if your application starts the activity in the camera application that captures a photo, that activity runs in the process that belongs to the camera application, not in your application's process.
Because the system runs each application in a separate process with file permissions that restrict access to other applications, your application cannot directly activate a component from another application. The Android system, however, can. So, to activate a component in another application, you must deliver a message to the system that specifies your intent to start a particular component. The system then activates the component for you.
Activating Components
Three of the four component types—activities, services, and broadcast receivers—are activated by an asynchronous message called an intent. Intents bind individual components to each other at runtime (you can think of them as the messengers that request an action from other components), whether the component belongs to your application or another.
An intent is created with an intentobject, which defines a message to activate either a specific component or a specific type of component—an intent can be either explicit or implicit, respectively.
For activities and services, an intent defines the action to perform (for example, to "view" or "send" something) and may specify the URI of the data to act on (among other things that the component being started might need to know). For example, an intent might convey a request for an activity to show an image or to open a web page. In some cases, you can start an activity to receive a result, in which case, the activity also returns the result in an intent(for example, you can issue an intent to let the user pick a personal contact and have it returned to you—the return intent includes a URI pointing to the chosen contact).
For broadcast receivers, the intent simply defines the announcement being broadcast (for example, a broadcast to indicate the device battery is low includes only a known action string that indicates "battery is low").
The other component type, content provider, is not activated by intents. Rather, it is activated when targeted by a request from a content resolver The content resolver handles all direct transactions with the content provider so that the component that's performing transactions with the provider doesn't need to and instead calls methods on the content object. This leaves a layer of abstraction between the content provider and the component requesting information (for security).
There are separate methods for activating each type of component:
The Manifest File
Before the Android system can start an application component, the system must know that the component exists by reading the application's AndroidManifest.xml file (the "manifest" file). Your application must declare all its components in this file, which must be at the root of the application project directory.
The manifest does a number of things in addition to declaring the application's components, such as:
Identify any user permissions the application requires, such as Internet access or read-access to the user's contacts.
Declare the minimum API Level required by the application, based on which APIs the application uses.
Declare hardware and software features used or required by the application, such as a camera, bluetooth services, or a multitouch screen.
API libraries the application needs to be linked against (other than the Android framework APIs), such as the Google Maps library.
Declaring component capabilities
As discussed above, in Activating Components, you can use an Intent to start activities, services, and broadcast receivers. You can do so by explicitly naming the target component (using the component class name) in the intent. However, the real power of intents lies in the concept of intent actions. With intent actions, you simply describe the type of action you want to perform (and optionally, the data upon which you’d like to perform the action) and allow the system to find a component on the device that can perform the action and start it. If there are multiple components that can perform the action described by the intent, then the user selects which one to use.
The way the system identifies the components that can respond to an intent is by comparing the intent received to the intent filters provided in the manifest file of other applications on the device.
When you declare a component in your application's manifest, you can optionally include intent filters that declare the capabilities of the component so it can respond to intents from other applications. You can declare an intent filter for your component by adding an <intent-filter> element as a child of the component's declaration element.
For example, an email application with an activity for composing a new email might declare an intent filter in its manifest entry to respond to "send" intents (in order to send email). An activity in your application can then create an intent with the “send” action (ACTION_SEND), which the system matches to the email application’s “send” activity and launches it when you invoke the intent with startActivity().
For more about creating intent filters, see the Intents and Intent Filters document.
Declaring application requirements
There are a variety of devices powered by Android and not all of them provide the same features and capabilities. In order to prevent your application from being installed on devices that lack features needed by your application, it's important that you clearly define a profile for the types of devices your application supports by declaring device and software requirements in your manifest file. Most of these declarations are informational only and the system does not read them, but external services such as Google Play do read them in order to provide filtering for users when they search for applications from their device.
For example, if your application requires a camera and uses APIs introduced in Android 2.1 (API Level 7), you should declare these as requirements in your manifest file. That way, devices that do not have a camera and have an Android version lower than 2.1 cannot install your application from Google Play.
However, you can also declare that your application uses the camera, but does not require it. In that case, your application must perform a check at runtime to determine if the device has a camera and disable any features that use the camera if one is not available.
Here are some of the important device characteristics that you should consider as you design and develop your application:
Screen size and density
In order to categorize devices by their screen type, Android defines two characteristics for each device: screen size (the physical dimensions of the screen) and screen density (the physical density of the pixels on the screen, or dpi—dots per inch). To simplify all the different types of screen configurations, the Android system generalizes them into select groups that make them easier to target.
The screen sizes are: small, normal, large, and extra large. The screen densities are: low density, medium density, high density, and extra high density.
By default, your application is compatible with all screen sizes and densities, because the Android system makes the appropriate adjustments to your UI layout and image resources. However, you should create specialized layouts for certain screen sizes and provide specialized images for certain densities, using alternative layout resources, and by declaring in your manifest exactly which screen sizes your application supports with the <supports-screens> element.