毕 业 设 计(论 文)文 献 综 述
差动伺服驱动工作台
摘要:本文主要介绍了差动伺服驱动工作台 。面对我国目前机床数量少、工业生产规模小的特点,突出的任务是用较少的资金迅速改变机械工业落后的面貌。而数控车床(及其系统)已经成为现代机器制造业中不可缺少的组成部分。所以,实现这一任务的有效的、基本的途径就是普及应用经济型数控机床。
进给系统是由伺服电机经滚珠丝杠拖动工作台来完成的所以设计涉及伺服电机的选择,滚珠丝杠设计等。目前绝大部分的机床的横向进给均是采用滚珠丝杠来传递运动的,传动的精确性主要取决于丝杠支承形式,丝杠与伺服电机的联接方式。在设计中充分考虑到这两个问题,并且,设计精度须达原始数据。
关键词:滚珠丝杠 伺服电机 横向进给
Differential servo drive the workbench
Abstract:This paper introduces the differential servo drive table. Faced with China's current small number of machine tools, industrial production of small-scale features, highlight the task is to use less money to quickly change the face of the mechanical industry behind. The CNC lathe (and its system) has become an indispensable part of modern machine manufacturing. Therefore, to achieve this task is an effective, the basic way is to popularize the application of economic CNC machine tools.
Feed system is driven by the servo motor by the ball screw to complete the work of the table so the design involves the choice of servo motor, ball screw design. At present, most of the machine tool horizontal feed are used to convey the ball screw, the accuracy of the drive depends on the form of screw support, screw and servo motor connection. In the design of full consideration of these two issues, and design accuracy to be the original data.
Keyword: holler-type thread Servo motor landscape orientation
前言:
数控技术也叫计算机数控技术(CNC,Compute Numerical Control),目前它是采用计算机实现数字程序控制的技术。
数控技术是机械加工自动化的基础,是数控机床的核心技术,其水平高低关系到国家战略地位和体现国家综合国力的水平,数控技术的广泛应用给传统的制造业的生产方式,产品结构带来了深刻的变化。也给传统的机械,机电专业的人才带来新的机遇和挑战。我国经济全面与国际接轨,并逐步成为全球制造中心,我国企业广泛应用现代化数控技术参与国际竞争。数控技术是制造实现自动化,集成化的基础,是提高产品质量,提高劳动生产率不可少的物资手段。
数控机床的伺服驱动系统作为一种实现切削刀具与工件间运动的进给驱动和执行机构,是数控机床的一个重要组成部分,它在很大程度上决定了数控机床的性能,如数控机床的最高移动速度、跟踪精度、定位精度等一系列重要指标取决于伺服驱动系统性能的优劣。因此,随着数控机床的发展,研究和开发高性能的伺服驱动系统,一直是现代数控机床研究的关键技术之一。
在数控机床中,伺服系统是数控机床里的一个非常重的部分,对于它的控制的好坏一定程度上反应一个机床的控制柔性的程度。步进电机驱动系统控制数控车床进给运动,为车床主轴提供驱动功率以及所需的切削力。目前在数控车床开环系统中,进给驱动常使用伺服步进电机,由于直流伺服电动机存在着一些的固有的缺点(比如,有电刷,限制了转速的提高,而且结构复杂,价格较贵。 ),使其应用环境受到限制。交流伺服电动机没有这些缺点,且转子惯量比直流电动机小,使得动态响应好。另外在同样体积下,交流电动机的输出功率可比直流电动机提高10%~70%;其容量也可以比直流电动机造得大,达到更高的电压和转速。因此,交流伺服系统得到了迅速发展,已经形成潮流。从20世纪80年代后期开始,大量使用交流伺服系统,目前,已基本取代了直流电动机,直流电动机已逐渐被淘汰,在数控机床的主轴驱动中,均采用笼型异步电动机。为了获得良好的主轴特性,主轴驱动系统中采用矢量变频控制的交流主轴电动机,矢量控制分无速度传感器和有速度传感器两种方式,后者具有更高的速度控制精度,在数控车床中无速度传感器的矢量变频器已符合控制要求,而在进给驱动系统中一般都采用永磁同步电机,1964年德国人率先提出脉宽调制变频思想,把通讯系统中的调制技术应用于交流变频器。调制方法很多,目前用得最多的是正弦脉宽调制。
伺服系统对伺服电机的要求:
(1)从最低速到最高速电机都能平稳运转,转矩波动要小,尤其在低速如0.1r /min或更低速时,仍有平稳的速度而无爬行现象。
(2)电机应具有大的较长时间的过载能力,以满足低速大转矩的要求。一般直流伺服电机要求在数分钟内过载4-6倍而不损坏。
(3)为了满足快速响应的要求,电机应有较小的转动惯量和大的堵转转矩,并具有尽可能小的时间常数和启动电压。电机应具有耐受4000rad/s2以上的角加速度的能力,才能保证电机可在0.2s以内从静止启动到额定转速。
(4)电机应能随频繁启动、制动和反转。
随着微电子技术、计算机技术和伺服控制技术的发展,数控机床的伺服系统已开始采用高速、高精度的全数字伺服系统。使伺服控制技术从模拟方式、混合方式走向全数字方式。由位置、速度和电流构成的三环反馈全部数字化、软件处理数字PID,使用灵活,柔性好。数字伺服系统采用了许多新的控制技术和改进伺服性能的措施,使控制精度和品质大大提高。
数控车床的进给传动系统一般均采用进给伺服系统。这也是数控车床区别于普通车床的一个特殊部分。
伺服系统的分类:
数控车床的伺服系统一般由驱动控制单元、驱动元件、机械传动部件、执行件和检测反馈环节等组成。驱动控制单元和驱动元件组成伺服驱动系统。机械传动部件和执行元件组成机械传动系统。检测元件与反馈电路组成检测系统。
进给伺服系统按其控制方式不同可分为开环系统和闭环系统。闭环控制方式通常是具有位置反馈的伺服系统。根据位置检测装置所在位置的不同,闭环系统又分为半闭环系统和全闭环系统。半闭环系统具有将位置检测装置装在丝杠端头和装在电机轴端两种类型。前者把丝杠包括在位置环内,后者则完全置机械传动部件于位置环之外。全闭环系统的位置检测装置安装在工作台上,机械传动部件整个被包括在位置环之内。
开环系统的定位精度比闭环系统低,但它结构简单、工作可靠、造价低廉。由于影响定位精度的机械传动装置的磨损、惯性及间隙的存在,故开环系统的精度和快速性较差。
全闭环系统控制精度高、快速性能好,但由于机械传动部件在控制环内,所以系统的动态性能不仅取决于驱动装置的结构和参数,而且还与机械传动部件的刚度、阻尼特性、惯性、间隙和磨损等因素有很大关系,故必须对机电部件的结构参数进行综合考虑才能满足系统的要求。因此全闭环系统对机床的要求比较高,且造价也较昂贵。闭环系统中采用的位置检测装置有:脉冲编码器、旋转变压器、感应同步器、磁尺、光栅尺和激光干涉仪等。
数控车床的进给伺服系统中常用的驱动装置是伺服电机。伺服电机有直流伺服电机和交流伺服电机之分。交流伺服电机由于具有可靠性高、基本上不需要维护和造价低等特点而被广泛采用。
直流伺服电动机引入了机械换向装置。其成本高,故障多,维护困难,经常因碳刷产生的火花而影响生产,并对其他设备产生电磁干扰。同时机械换向器的换向能力,限制了电动机的容量和速度。电动机的电枢在转子上,使得电动机效率低,散热差。为了改善换向能力,减小电枢的漏感,转子变得短粗,影响了系统的动态性能。
交流伺服已占据了机床进给伺服的主导地位,并随着新技术的发展而不断完善,具体体现在三个方面。一是系统功率驱动装置中的电力电子器件不断向高频化方向发展,智能化功率模块得到普及与应用;二是基于微处理器嵌入式平台技术的成熟,将促进先进控制算法的应用;三是网络化制造模式的推广及现场总线技术的成熟,将使基于网络的伺服控制成为可能。
总结:
我们这次设计的是不考虑铣削力情况下的差动伺服驱动工作台结构,大大降低了设计难度。我做的是计算部分,主要是计算导轨、丝杆等。通过本次课程设计,我大致了解了铣床的构造和工作原理。零部件的设计.进一步提高了我们对计算机辅助设计的认识,加强了我们对各个软件特点的掌握。课程设计中,我们充分利用各个软件的优势进行设计,提高了设计速度,同时达到了我们的设计目的。
参考文献
[1] 范超毅.数控技术课程设计[M].武汉:华中科技大学出版社,2007.
[2] 濮良贵.机械设计[M].北京:高等教育出版社,2001.
[3] 刘朝儒.机械制图.[M]北京:高等教育出版社,2001.
[4] 邓志平.机械制造技术基础.[M]成都:西南交通大学出版社,2004.
[5] 胡秋.数控机床进给系统的设计[J].机床与液压,2004(6):55-56.
[6] 邹小琦.数控机床进给系统的定位精度[J].南昌大学学报,1997(4):84-87.
[7] 王爱玲,白恩远.现代数控机床[M].北京:国防工业出版社,2003.
[8]陈立德,机械设计基础.3版.北京:高等教育出版社,2007
[9]徐晓峰,电机及拖动.北京:高等教育出版社,2004
[10] 杨长能,电力拖动基础.北京:机械工业出版社,1996