设计 任务书 文档 开题 答辩 说明书 格式 模板 外文 翻译 范文 资料 作品 文献 课程 实习 指导 调研 下载 网络教育 计算机 网站 网页 小程序 商城 购物 订餐 电影 安卓 Android Html Html5 SSM SSH Python 爬虫 大数据 管理系统 图书 校园网 考试 选题 网络安全 推荐系统 机械 模具 夹具 自动化 数控 车床 汽车 故障 诊断 电机 建模 机械手 去壳机 千斤顶 变速器 减速器 图纸 电气 变电站 电子 Stm32 单片机 物联网 监控 密码锁 Plc 组态 控制 智能 Matlab 土木 建筑 结构 框架 教学楼 住宅楼 造价 施工 办公楼 给水 排水 桥梁 刚构桥 水利 重力坝 水库 采矿 环境 化工 固废 工厂 视觉传达 室内设计 产品设计 电子商务 物流 盈利 案例 分析 评估 报告 营销 报销 会计
 首 页 机械毕业设计 电子电气毕业设计 计算机毕业设计 土木工程毕业设计 视觉传达毕业设计 理工论文 文科论文 毕设资料 帮助中心 设计流程 
垫片
您现在所在的位置:首页 >>毕设资料 >> 文章内容
                 
垫片
   我们提供全套毕业设计和毕业论文服务,联系微信号:biyezuopin QQ:2922748026   
简易机械手及控制(机械毕业设计外文翻译)
文章来源:www.biyezuopin.vip   发布者:毕业作品网站  

Simple Manipulator And The Control Of It

                                            机电之家
简易机械手及控制
  随着社会生产力的持续进步和人们生活节奏的日益加快,人们对生产效率也提出了新要求。而由于微电子技术和计算软、硬件技术的迅速发展和现代控制理论的不断完善,使得机械手技术也快速发展起来,其中气动机械手系统由于其介质来源简便且无污染、组件价格低廉、维修方便以及系统安全可靠等特点,已渗透到工业领域的各个部门,在工业发展中占有重要地位。本文讲述的气动机械手由气控机械手、XY轴丝杠组、转盘机构、旋转基座等机械部分组成。主要作用是完成机械部件的搬运工作,能使用于各种不同的生产线或物流流水线中,使得零件搬运、货物运输更快捷、便利。
  一.四轴联动简易机械手的结构及动作过程
  机械手结构如下图1所示,有气控机械手(1)、XY轴丝杠组(2)、转盘机构(3)、旋转基座(4)等组成。
         
                   图1.机械手结构

  其运动控制方式为:(1)由伺服电机驱动可旋转角度为360°的气控机械手(有光电传感器确定起始0点);(2)由步进电机驱动丝杠组件使机械手沿X、Y轴移动(有x、y轴限位开关);(3)可回旋360°的转盘机构能带动机械手及丝杠组自由旋转(其电气拖动部分由直流电动机、光电编码器、接近开关等组成);(4)旋转基座主要支撑以上3部分;(5)气控机械手的张合由气压控制(充气时机械手抓紧,放气时机械手松开)。
  其工作过程为:当货物到达时,机械手系统开始动作;步进电机控制开始向下运动,同时另一路步进电机控制横轴开始向前运动;伺服电机驱动机械手旋转到达正好抓取货物的方位处,然后充气,机械手夹住货物。
     步进电机驱动纵轴上升,另一个步进电机驱动横轴开始向前走;转盘直流电机转动使机械手整体运动,转到货物接收处;步进电机再次驱动纵轴下降,到达指定位置后,气阀放气,机械手松开货物;系统回位准备下一次动作。
二.控制器件选型
 为达到精确控制的目的,根据市场情况,对各种关键器件选型如下:
 1.步进电机及其驱动器
机械手纵轴(Y轴)和横轴(X轴)选用的是北京四通电机技术有限公司的42BYG250C型两相混合式步进电机,步距角为0.9°/1.8°,电流1.5A。M1是横轴电机,带动机械手机构伸、缩;M2是纵轴电机,带动机械手机构上升、下降。所选用的步进电机驱动器是SH-20403型,该驱动器采用10~40V直流供电,H桥双极性恒相电流驱动,最大3A的8种输出电流可选,最大64细分的7种细分模式可选,输入信号光电隔离,标准单脉冲接口,有脱机保持功能,半密闭式机壳可适应更恶劣的工况环境,提供节能的自动半电流方式。驱动器内部的开关电源设计,保证了驱动器可适应较宽的电压范围,用户可根据各自情况在10~40VDC之间选择。一般来说较高的额定电源电压有利于提高电机的高速力矩,但却会加大驱动器的损耗和温升。本驱动器最大输出电流值为3A/相(峰值),通过驱动器面板上六位拨码开关的第5、6、7,三位可组合出8种状态,对应8种输出电流,从0.9A到3A以配合不同的电机使用。本驱动器可提供整步、改善半步、4细分、8细分、16细分、32细分和64细分7种运行模式,利用驱动器面板上六位拨码开关的第1、2、3,三位可组合出不同的状态。
 2.伺服电机及其驱动器
  机械手的旋转动作采用松下伺服电机A系列小惯量MSMA5AZA1G,其额定输出50W、100/200V共用,旋转编码器规格为增量式(脉冲数2500p/r、分辨率10000p/r、引出线11线);有油封,无制动器,轴采用键槽连接。该电机采用松下公司独特算法,使速度频率响应提高2倍,达到500Hz;定位超调整定时间缩短为以往松下伺服电机产品V系列的1/4。具有共振抑制功能、控制功能、全闭环控制功能,可弥补机械的刚性不足,从而实现高速定位,也可通过外接高精度的光栅尺,构成全闭环控制,进一步提高系统精度。具有常规自动增益调整和实时自动增
  益调整两种自动增益调整方式,还配有RS-485、RS-232C通信口,使上位控制器可同时控制多达16个轴。伺服电机驱动器为A系列MSDA5A3A1A,适用于小惯量电动机。
3.直流电机
  可回旋360°的转盘机构有直流无刷电机带动,系统选用的是北京和时利公司生产的57BL1010H1无刷直流电机,其调速范围宽、低速力矩大、运行平稳、低噪音、效率高。无刷直流电机驱动器使用北京和时利公司生产的BL-0408驱动器,其采用24~48V直流供电,有起停及转向控制、过流、过压及堵转保护,且有故障报警输出、外部模拟量调速、制动快速停机等特点。
 4.旋转编码器
  在可回旋360°的转盘机构上,安装有OMRON公司生产的E6A2增量型旋转编码器,编码器将信号传给PLC,实现转盘机构的精确定位。
 5. PLC的选型
  根据系统的设计要求,选用OMRON公司生产的CPM2A小型机。CPM2A在一个小巧的单元内综合有各种性能,包括同步脉冲控制、中断输入、脉冲输出、模拟量设定和时钟功能等。CPM2A的CPU单元又是一个独立单元,能处理广泛的机械控制应用问题,所以它是在设备内用作内装控制单元的理想产品。完整的通信功能保证了与个人计算机、其它OMRON PC和OMRON可编程终端的通信。这些通信能力使四轴联动简易机械手能方便的融合到工业控制系统中。
三.软件编程
 1.软件流程图
流程图是PLC程序设计的基础。只有设计出流程图,才可能顺利而便捷地编写出梯形图并写出语句表,最终完成程序的设计。所以写出流程图非常关键也是程序设计首先要做的任务。依据四轴联动简易机械手的控制要求,绘制流程图如图2所示。

            
                 图2.软件流程图
  2.程序部分
  由于论文篇幅有限,这里只列出了开始两段程序,供读者参阅,见图3。

                                图3 程序列表
 四.结束语
  四轴联动简易机械手的各个动作和状态都由PLC控制,不仅能满足机械手的手动、半自动、自动等操作方式所需的大量按扭、开关、位置检测点的要求,更可通过接口元器件与计算机组成PLC工业局域网,实现网络通信与网络控制。使四轴联动简易机械手能方便地嵌入到工业生产流水线中。

外文文献原文:
               Simple Manipulator And The Control Of It
   Along with the social production progress and people life rhythm is accelerating, people on production efficiency also continuously put forward new requirements. Because of microelectronics technology and calculation software and hardware technology rapid development and modern control theory, the perfection of the fast development, the robot technology pneumatic manipulator system because its media sources do not pollute the environment, simple and cheap components, convenient maintenance and system safety and reliability characteristic, has penetrated into every sector of the industrial field, in the industrial development plays an important role. This article tells of the pneumatic control robots, furious manipulator XY axis screw group, the turntable institutions, rotating mechanical parts base. Main effect is complete mechanical components handling work, to be placed in different kinds of line or logistics pipeline, make parts handling, transport of goods more quick and convenient.
Matters of the manipulator axial linkage simple structure and action process
Manipulator structure, as shown in figure 1 below have accused of manipulator (1), XY axis screw group (2), the turntable institutions (3), rotating base (4), etc.
                     

                Figure 1 Manipulator Structure      

Its motion control mode is: (1) can rotate by servomotor Angle for 360 ° breath control manipulator (photoelectric sensor sure start 0 point); (2) by stepping motor drive screw component make along the X, Y manipulators move (have X, Y axis limit switches); (3) can rotates 360 ° can drive the turntable institutions manipulators and bushings free rotation (its electric drag in part by the dc motivation, photoelectric encoder, close to switch etc); (4) rotating base main support above 3 parts; (5) gas control manipulator by pressure control (Zhang close when pressed on, put inflatable robot manipulators loosen) when gas.
Its working process for: when the goods arrived, manipulator system begins to move; Stepping motor control, while the other start downward motion along the horizontal axis of the step-motor controller began to move exercise; Servo motor driver arrived just grab goods manipulators rotating the orientation of the place, then inflatable, manipulator clamped goods.
Vertical axis stepper motor drive up, the other horizontal axis stepper motor driver started to move forward; rotary DC motor rotation so that the whole robot motion, go to the cargo receiving area; longitudinal axis stepper motor driven down again, arrived at the designated location, Bleed valve, mechanical hand release the goods; system back to the place ready for the next action.
II.Device control
To achieve precise control purposes, according to market conditions, selection of a variety of key components as follows:
1. Stepper motor and drive
  Mechanical hand vertical axis (Y axis) and horizontal (X axis) is chosen Motor Technology Co., Ltd. Beijing Stone 42BYG250C type of two-phase hybrid stepping motor, step angle of 0.9 ° / 1.8 °, current is 1.5A. M1 is the horizontal axis motor driven manipulator stretch, shrink; M2 is the vertical axis motor driven manipulator rise and fall. The choice of stepper motor drive is SH-20403 type, the drive uses 10 ~ 40V DC power supply, H-phase bridge bipolar constant current drive, the maximum output current of 3A of the 8 optional, maximum fine of 64 segments of 7 sub-mode optional optical isolation, standard single-pulse interface, with offline capabilities to maintain semi-sealed enclosure can be adapted to environmental conditions even worse, provide semi-current energy-saving mode automatically. Drive the internal switching power supply design to ensure that the drive can be adapted to a wide voltage range, the user can according to their circumstances to choose between the 10 ~ 40VDC. Generally the higher rated power supply voltage can improve high-speed torque motor, but the drive will increase the loss and temperature rise. The maximum output drive current is 3A / phase (peak), six drive-panel DIP switch on the first three can be combined 5,6,7 8 out of state, corresponding to the 8 kinds of output current from 0.9A to 3A to meet the different motors. The drive can provide full step, half step        improvement, subdivision 4, 8 segments, 16 segments, 32 segments and 64 segments of 7 operating modes. The use of six of the drive panel DIP switches 1,2and3 can be combined from three different states.
2. Servo motors and drives
  Manipulator with Panasonic servo motor rotational movement A series of small inertia MSMA5AZA1G, the rated 50W, 100/200V share, rotary incremental encoder specifications (number of pulses 2500p / r, resolution of 10000p / r, Lead 11 lines) ; a seal, no brakes, shaft with keyway connections. The motor uses Panasonic's unique algorithms, the rate increased by 2 times the frequency response, to 500Hz; positioning over the past adjust the scheduled time by Panasonic servo motor products for the V Series of 1 / 4. With the resonance suppression, control, closed loop control, can make up for lack of mechanical rigidity, in order to achieve high positioning accuracy can also be an external grating to form closed loop control to further improve accuracy. With a conventional automatic gain adjustment and real-time automatic gain
  Interest adjustment in the automatic gain adjustment methods, which also has RS-485, RS-232C communication port, the host controller can control up to 16 axes. Servo motor drives are a series MSDA5A3A1A, applicable to small inertia motor.
3. DC machine
  360 ° swing of the turntable can be a brushless DC motor driven organization, the system is chosen when the profit company in Beijing and the 57BL1010H1 brushless DC motor, its speed range, low-speed torque, smooth running, low noise, high efficiency. Brushless DC motor drive using the Beijing and when Lee's BL-0408 produced by the drive, which uses 24 ~ 48V DC power supply, a start-stop and steering control, over current, overvoltage and locked rotor protection, and there is failure alarm output external analog speed control, braking down so fast.
4. Rotary encoder
    Can swing 360 ° in the body on the turntable, fitted with OMRON E6A2 produced incremental rotary encoder, the encoder signals to the PLC, to achieve precise positioning of rotary bodies.
5. PLC Selection
     According to the system design requirements, the choice of OMRON CPM2A produced minicomputer. CPM2A in a compact unit integrated with a variety of properties, including the synchronization pulse control, interrupt input, pulse output, analog set and clock functions. CPM2A the CPU unit is a stand-alone unit, capable of handling a wide range of application of mechanical control, it is built in the device control unit for the ideal product. Ensure the integrity of communications and personal computers, other OMRON PC and OMRON Programmable Terminal communication. The communication capability allows the robot to Axis simple easy integration into industrial control systems.
III. Software programming
1. Software flow chart
    PLC programming flow chart is based. Only the design flow, it may be smooth and easy to prepare and write a statement form the ladder, and ultimately complete the process design. So write a flow chart of program design is critical to the task first thing to do. Axis Manipulator based on simple control requirements, drawing flow chart shown in Figure 2.
 
 Figure 2 Software flow chart    
2. Program part
Because space is limited, here only paper listed the first two program segment for readers see.            

                    Figure 3   Program part
 IV. Conclusion
Axis simple robot state by the various movements and PLC control, the robot can not only meet the manual, semi-automatic mode of operation required for such a large number of buttons, switches, position detection point requirements, but also through the interface components and Computer Organization PLC industrial LAN, network communication and network control. Axis simple robot can be easily embedded into industrial production pipeline.

机器人机械手

工业机器人机械手是在生产环境中用以提高生产效率的工具,它能做常规乏味的装配线工作,或能做那些对于工人来说是危险的工作,例如:第一代工业机器人机械手是用来在核电站中更换核燃料棒,如果人去做这项工作,将会遭受有害射线的辐射。工业机器人机械手亦能工作在装配线上将小元件装配到一起,如将电子元件安放在电路印刷板,这样,工人就能从这项乏味的常规工作中解放出来。机器人机械手也能按程序要求用来拆除炸弹,辅助残疾人,在社会的很多应用场合下履行职能。
机器人机械手可以认为是将手臂末端的工具、传感器和手爪移动到程序指定位置的一种机器。当机器人机械手到达位置后,它将执行某种任务。这些任务可以是焊接、密封、机器装料、拆装以及装配工作。除了编程以及系统的开停之外,一般来说这些工作可以在无人干预下完成。
如下叙述的是机器人机械手系统基本术语:
1.机器人机械手是一个可编程、多功能的机械手,通过给要完成的不同任务编制各种动作,它可以运动零件、材料、工具以及特殊装置。这个基本定义引导出后续段落的其他定义,从而描绘出一个完整的机器人机械手系统。
2.预编程位置点是机器人机械手为完成工作而必须跟踪的轨迹。在某些位置点上机器人机械手将停下来做某些操作,如装配零件、喷涂油漆或者焊接。这些预编程点贮存在机器人机械手的贮存器中,并为后续的连续操作所调用,而且这些预编程点像其他程序数据一样,可在日后随工作需要而变化。因且,正是这种可编程的特征,一个工业机器人机械手很像一台计算机,数据可以在这里储存、后续调用与编辑。
3.机械手是机器人机械手的手臂,它使机器人机械手能弯屈、延伸和旋转,提供这些运动的是机械手的轴,亦是所谓的机械手的自由度。一个机械人能有3-16轴,自由度一词总是与机器人机械手轴数相关。
4.工具和手爪不是机器人机械手自身组成部分,但它们是安装在机器人机械手手臂末端的附件。这些连在机器人机械手手臂末端的附件可使机器人机械手抬起工件、点焊、刷漆、电焊弧、钻孔、打毛刺以及根据机器人机械手的要求去做各种各样的工作。
5.机器人机械手系统还可以控制机器人机械手的工作单元,工作单元是机器人机械手执行任务所处的整体环境,该单元包括控制器、机械手、工作平台、安全保护装置或者传输装置。所有这些为保证机器人机械手完成自己任务而必需的装置都包括在这一工作单元中。另外,来自外设的信号与机器人机械手何时装配工作、取工件或放工件到传输装置上。
机器人机械手系统有三个基本不见:机械手、控制器和动力源。
A.机械手
机械手做机器人机械手系统中粗重工作,它包括两个部分:机构和附件,机械手也有联接附件基座,如下图所示一机器人机械手基座与附件之间的联接情况。
机械手基座通常固定在工作区域的地基上,有时基座也可以移动,在这种情况下基座安装在导轨或者轨道上,允许机械手从一个位置移动到另外一个位置。
正如前面所提到的那样,附件从机器人机械手基座上延伸出来,附件就是
机器人机械手的手臂,它可以是直线型,也可以是轴节型手臂,轴节型手臂也是大家所知的关节型手臂。
机械臂使机械手产生各轴的运动。这些轴连在一个安装基座上,然后再练到托架上,托架确保机械手停留在某一位置。
    在手臂的末端上,连接着手腕,手腕由辅助轴和手腕凸缘组成,手腕是让机器人机械手用户在手腕凸缘上安装不同工具来做不同种工作。
机器手的轴使机械手在某一区域内执行任务,我们将这个区域为机器人机械手的工作单元,该区域的大小与机械手的尺寸相对应,一个典型装配机器人机械手的工作单元。随着机器人机械手机械结构尺寸的增加,工作单元的范围也必须相应增加。
机械手的运动由执行元件或驱动系统来控制。执行元件或驱动系统允许各轴在工作单元内运动。驱动系统可用电气液压和气压动力,驱动系统所产生的动力经机构转变为机械能,驱动系统与机械传动链相匹配。由链、齿轮和滚珠丝杠组成的机械传动链驱动着机器人机械手的各轴。
    B.控制器
机器人机械手控制器是工作单元的核心。控制器储存着预编程序供后续条用、控制外设,及与厂内计算机进行通讯以满足产品经常更新的需要。
控制器用于控制机械手运动和在工作单元内控制机器人机械手外设。用户可通过手持的示教盒将机械手运动的程序编入控制器。这些信息储存在控制器的存储器中以备后续调用,控制器存储了机器人机械手系统的所有编程数据,它能存储几个不同的程序,并且所有这些程序均能编辑。
控制器要求能够在工作单元内与外设进行通信。例如控制器有一个输入端,它能标识某个机加工操作何时完成。当该加工循环完成后,输入端接通,告诉控制器定位机械手以便能抓取以加工工件,随后机械手抓取一未加工工件,将其放置在机床上。接着,控制器给机床开始加工的信号。
控制器可以由根据时间顺序而步进的机械式轮毂组成,这种类型的控制器可用在非常简单的机械系统中。用于大多数机器人机械手系统中的控制器代表现代电子学的水平,是更复杂的装置,即它们是由微处理器操纵的。这些微处理器可以是8位,16位或32位处理器。它们可以使得控制器在操作工程中显得非常柔性。
控制器能通过通信线发送电信号,使它能与机器手各轴交流信息,在机器人机械手的机械手和控制器之间的双向交流信息可以保持系统操作和位置经常更新,控制器亦能控制安装在机器人机械手手腕上的任何工具。
控制器也有与厂内各计算机进行通信的任务,这种通信联系使机器人机械手成为计算机辅助制造(CAM)系统的一个组成部分。
存储器。基于微处理器的系统运行时要与固态的存储装置相连,这些存储装置可以是磁泡,随机存储器、软盘、磁带等。每种记忆存储装置均能贮存、编辑信息以备后续调用和编辑。
C.动力源
    动力源是给机器人机械手和机器手提供动力的单元。传给机器人机械手系统的动力源有两种,一种是用于控制器的交流电,另一种是用于驱动机械手各轴的动力源,例如,如果机器人机械手的机械手是由液压和气压驱动的,控制信号便传送到这些装置中,驱动机器人机械手运动。
对于每一个机器人机械手系统,动力是用来操纵机械手的。这些动力可来源于液压动力源、气压动力源或电源,这些能源是机器人机械手工作单元整体的一部分。
Robot manipulators
The industrial Robot manipulator is used in the manufacturing environment to increase productivity . It can be used to do routine and tedious assembly line jobs , or it can perform jobs that might be hazardous to do routine and tedious assembly line jobs , or it can perform jobs that might be hazardous to the human worker . For example , one of the first industrial Robot manipulators was used to replace the nuclear fuel rods in nuclear power plants . A human doing this job might be exposed to harmful amounts of radiation . The industrial Robot manipulator can also operate on the assembly line , putting together small components , such as placing electronic components on a printed circuit board . Thus , the human worker can be relieved of the routine operation of this tedious task . Robot manipulators can also be programmed to defuse bombs , to serve the handicapped , and to perform functions in numerous applications in our society .
The Robot manipulator can be thought of as a machine that will move an end-of-arm tool , sensor , and gripper to a preprogrammed location . When the Robot manipulator arrives at this location , it will perform some sort of task . This task could be welding , sealing , machine loading , machine unloading , or a host of assembly jobs . Generally , this work can be accomplished without the involvement of a human being , except for programming and for turning the system on and off .
The basic terminology of Robot manipulatoric systems is introduced in the following :
1. A Robot manipulator is a reprogrammable , multifunctional manipulator designed to move parts , materials , tools , or special devices through variable programmed motions for the performance of a variety of different task . This basic definition leads to other definitions , presented in the following paragraphs , that give a complete picture of a Robot manipulatoric system . 
2. Preprogrammed locations are paths that the Robot manipulator must follow to accomplish work . At some of these locations , the Robot manipulator will stop and perform some operation , such as assembly of parts , spray painting , or welding . These preprogrammed locations are stored in the Robot manipulator’s memory and are recalled later for continuous operation . Furthermore , these preprogrammed locations , as well as other program data , can be changed later as the work requirements change . Thus , with regard to this programming feature , an industrial Robot manipulator is very much like a computer , where data can be stored and later recalled and edited .
3. The manipulator is the arm of the Robot manipulator . It allows the Robot manipulator to bend , reach , and twist . This movement is provided by the manipulator’s axes , also called the degrees of freedom of the Robot manipulator . A Robot manipulator can have from 3 to 16 axes . The term degrees of freedom of freedom will always relate to the number of axes found on a Robot manipulator .
4. The tooling and grippers are not part of the Robot manipulatoric system itself ; rather , they are attachments that fit on the end of the Robot manipulator’s arm . These attachments connected to the end of the Robot manipulator’s arm allow the Robot manipulator to lift parts , spot-weld , paint , arc-weld , drill , deburr , and do a variety of tasks , depending on what is required of the Robot manipulator .
5. The Robot manipulatoric system can also control the work cell of the operating Robot manipulator . the work cell of the Robot manipulator is the total environment in which the Robot manipulator must perform its task . Included within this cell may be the controller , the Robot manipulator manipulator , a work table , safety features , or a conveyor . All the equipment that is required in order for the Robot manipulator to do its job is included in the work cell . In addition , signals from outside devices can communicate with the Robot manipulator in order to tell the Robot manipulator when it should assemble parts , pick up parts , or unload parts to a conveyor .
The Robot manipulatoric system has three basic components : the manipulator , the controller , and the power source .
A . Manipulator
The manipulator , which does the physical work of the Robot manipulatoric system , consists of two sections : the mechanical section and the attached appendage .  The manipulator also has a base to which the appendages are attached . Fig.1 illustrates the connection of the base and the appendage of a Robot manipulator .
The base of the manipulator is usually fixed to the floor of the work area . Sometimes , though , the base may be movable . In this case , the base is attached to either a rail or a track , allowing the manipulator to be moved from one location to another .
As mentioned previously , the appendage extends from the base of the Robot manipulator . The appendage is the arm of the Robot manipulator . It can be either a straight , movable arm or a jointed arm . the jointed arm is also known as an articulated arm .
The appendages of the Robot manipulator manipulator give the manipulator its various axes of motion . These axes are attached to a fixed base , which , in turn , is secured to a mounting . This mounting ensures that the manipulator will remain in one location。
At the end of the arm , a wrist  is connected . The wrist is made up of additional axes and a wrist flange . The wrist flange allows the Robot manipulator user to connect different tooling to the wrist for different jobs .
The manipulator’s axes allow it to perform work within a certain area . This area is called the work cell of the Robot manipulator , and its size corresponds to the size of the manipulator . Fig.2 illustrates the work cell of a typical assembly Robot manipulator . As the Robot manipulator’s physical size increases , the size of the work cell must also increase .
The movement of the manipulator is controlled by actuators , or drive systems . The actuators , or drive system , allows the various axes to move within the work cell . The drive system can use electric , hydraulic , or pneumatic power . The energy developed by the drive system is converted to mechanical power by various mechanical drive systems .The drive systems are coupled through mechanical linkages .These linkages, in turn , drive the different axes of the Robot manipulator . The mechanical linkages may be composed of chains , gears ,and ball screws.
B. Controller
The controller in the Robot manipulatoric system is the heart of the operation. The controller stores preprogrammed information for later recall, control peripheral devices, and communicates with computers within the plant for constant updates in production
The controllers is used to control the Robot manipulator manipulator’s movements as well as to control peripheral components within the work cell. The user can program the movements of the manipulator into the controller through the use of a hand-held teach pendent. This information is stored in the memory of the controller for later recall. The controller stores all program data of the Robot manipulatoric system. It can store several different programs, and any of these programs can be edited.
The controller is also required to communicate with peripheral equipment within the work cell. For example, the controller has an input line that identifies when a machining operation is completed. When the machine cycle is completed, the input line turns on, telling the controller to position the manipulator so that it can pick up the finished part. Then, a new part is picked up by the manipulator and placed into the machine. Next, the controller signals the machine to start operation.
The controller can be made from mechanically operated drums that step through a sequence of events. This type of controller operates with a very simple Robot manipulatoric system. The controllers found on the majority of Robot manipulatoric systems are more complex devices and represent state-of-the-art electronics. That is, they are microprocessor-operated. These microprocessors are either 8-bit, 16-bit, or 32-bit processors. This power allows the controller to be very flexible in its operation.
The controller can send electric signals over communication lines that allow it to talk with the various axes of manipulator. This two-way communication between the Robot manipulator manipulator and the controller maintains a constant update of the location and the operation of the system. The controller also controls any tooling placed on the end of the Robot manipulator’s wrist.
The controller also has the job of communicating with the different plant computers . The communication link establishes the Robot manipulator as part of a computer-assisted manufacturing (CAM) system.
As the basic definition stated , the Robot manipulator is a reprogrammable , multifunctional manipulator . Therefore , the controller must contain some type of memory storage . The microprocessor-based systems operate in conjunction with solid-state memory devices . These memory devices may be magnetic bubbles , random-access memory , floppy disks , or magnetic tape . Each memory storage device stores program information for later recall or for editing .
C. Power supply
The power supply is the unit that supplies power to the controller and the manipulator . Two types of power are delivered to the Robot manipulatoric system . One type of power is the AC power for operation of the controller . The other type of power is used for driving the various axes of the manipulator . For example , if the Robot manipulator manipulator id controlled by hydraulic or pneumatic manipulator drives , control signals are sent to these devices , causing motion of the Robot manipulator .
For each Robot manipulatoric system , power is required to operate the manipulator . This power can be developed from either a hydraulic power source , a pneumatic power source , or an electric power source , These power sources are part of the total components of the Robot manipulatoric work cell .

  全套毕业设计论文现成成品资料请咨询微信号:biyezuopin QQ:2922748026     返回首页 如转载请注明来源于www.biyezuopin.vip  

                 

打印本页 | 关闭窗口
本类最新文章
基于JSP+SSH的网上宠物交易 基于eNSP的某大学校园网络规划 基于Python+Django+
物流管理系统的开发与实现(SSM 物流管理系统的开发与实现(SSM 基于条码识别技术的试卷袋标签制作
| 关于我们 | 友情链接 | 毕业设计招聘 |

Email:biyeshejiba@163.com 微信号:biyezuopin QQ:2922748026  
本站毕业设计毕业论文资料均属原创者所有,仅供学习交流之用,请勿转载并做其他非法用途.如有侵犯您的版权有损您的利益,请联系我们会立即改正或删除有关内容!