设计 任务书 文档 开题 答辩 说明书 格式 模板 外文 翻译 范文 资料 作品 文献 课程 实习 指导 调研 下载 网络教育 计算机 网站 网页 小程序 商城 购物 订餐 电影 安卓 Android Html Html5 SSM SSH Python 爬虫 大数据 管理系统 图书 校园网 考试 选题 网络安全 推荐系统 机械 模具 夹具 自动化 数控 车床 汽车 故障 诊断 电机 建模 机械手 去壳机 千斤顶 变速器 减速器 图纸 电气 变电站 电子 Stm32 单片机 物联网 监控 密码锁 Plc 组态 控制 智能 Matlab 土木 建筑 结构 框架 教学楼 住宅楼 造价 施工 办公楼 给水 排水 桥梁 刚构桥 水利 重力坝 水库 采矿 环境 化工 固废 工厂 视觉传达 室内设计 产品设计 电子商务 物流 盈利 案例 分析 评估 报告 营销 报销 会计
 首 页 机械毕业设计 电子电气毕业设计 计算机毕业设计 土木工程毕业设计 视觉传达毕业设计 理工论文 文科论文 毕设资料 帮助中心 设计流程 
垫片
您现在所在的位置:首页 >>文科论文 >> 文章内容
                 
垫片
   我们提供全套毕业设计和毕业论文服务,联系微信号:biyezuopin QQ:2922748026   
基于LSTM的微博谣言检测研究丨厦门大学硕士研究生开题报告审核表
文章来源:www.biyezuopin.vip   发布者:毕业作品网站  
厦门大学硕士研究生开题报告审核表                                                        
填表日期      2015 年 10 月  10 日             (此表以A4纸双面打印,表格空间不够可附页)
院\系    
信息科学与技术
姓    名
 
学    号
 
专    业
计算机技术
研究方向
自然语言处理
入学时间
  2013 年  9 
导师姓名
  
职    称
 助理教授      
开题论文题目
基于LSTM的微博谣言检测研究
    社交网络的应用越来越广泛,以新浪微博为例现在已经有超过了三亿的注册用户。微博上大量频繁的信息互动必然滋生了大量的微博谣言,微博谣言的产生是一个互联网时代不断发展的必然产物,微博谣言的产生所带来的后果是非常明显的。有的微博谣言也许不具有广泛的危害性,但是有的可能会在生活、民生甚至政治层面全方位的带来不利的影响。微博谣言的传播与扩散给人们的正常生活、社会秩序造成了极坏的影响。研究微博谣言识别的方法,有助于用户判断信息的真假,营造健康的互联网环境,使微博在信息传播引导、舆情监控过程中起到积极作用。由于判定标准不一,导致难以识别谣言, 仅靠人力手段费时且耗力。因此采用文本自动识别的研究,有助于更好更高效的实时检测微博谣言。
 
微博数据量大、词汇冗余并且不断涌入新兴词汇,依靠传统的统计学习的方法是不现实的,如支持向量机SVM、BP算法等。因为传统的基于统计的学习方法需要不断的为新出现的数据标注,这并不能适用于动态性强的社交媒体产生的文本数据。而大多数的深度学习算法都属于无监督学习,这样便能够直接用大数据训练出一个可靠的结果而不需要大量人工标注的样本。深度学习自主学习的机制让这种算法能够适用于微博数据分类的研究。针对深度学习有关文本分类的问题,提出几个相关研究:
1.深度置信网(DBN)算法利用限制玻尔兹曼机(RBM)模型,能够找到全局最优参数,避免了比如NN和CNN算法等会陷入全局最优的问题,其次DBN算法能够快速学习提取到特征,学习效率和学习效果都非常好,生成的是一个观察数据和文本标签的联合分布,适合微博这类短文本数据的信息特征学习以及分类。
2.面对微博这类的140字符的短文本数据,字与字之间的语义时间序列是一个很重要的特征,可以提出这是影响微博谣言检测的一个关键线索。LSTM(Long-Short Term Memory)是后面时间节点对前面时间节点有很强感知力的改进型CNN算法,这种模型在手写识别包括图像处理等方面非常成功,针对140字符的段微博数据,LSTM算法模型会具有非常高的正确率以及效率。
3.基于DBN和LSTM算法模型的差异进行分析和改进,寻找更符合微博谣言特征学习分类的模型实现。
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
基于LSTM的深度学习进行谣言检测的研究与实现可以分为个阶段:
 第一步,将微博语原始数据去停用词以及分字处理,建立分字索引表,分为谣言和非谣言   两类,构建算法模型的输入数据的训练样本。
 第二步,用DBN算法模型训练学习谣言以及非谣言样本,分析实验结果。
 第三步,用LSTM算法模型训练学习谣言以及非谣言样本,分析实验结果。
 第四步,用测试样本分别测试两者的正确率以及效率,评估系统性能,寻找适合微博谣言检测的其它深度学习算法。
 
该生基于其个人的兴趣爱好,结合查阅的文献资料,课题具有一定的实用价值。该课题是学生所学专业知识的相关领域的探索,符合专业发展方向,研究方法和研究计划合理。
同意该课题开题。
 
 
 
导师签名            
                                                                 2015 年10月 10
 
导师
组或教研室审
核意
 
 
 
 
 
 
 
 
 
 
 
组长签名            
                                                                  年    月    日
 
                                                 
 
 
 
 
主管领导签名            
                                                                     年    月    日
注:本表由院系(所)研究生教学秘书存档。
                                                         厦门大学研究生院制表2005年3
  全套毕业设计论文现成成品资料请咨询微信号:biyezuopin QQ:2922748026     返回首页 如转载请注明来源于www.biyezuopin.vip  

                 

打印本页 | 关闭窗口
  下一篇文章:化工安全课程设计任务书
本类最新文章
The Honest Guide Sonar Target Cla Process Planning
Research on the Sustainable Land UniCycle: An And
| 关于我们 | 友情链接 | 毕业设计招聘 |

Email:biyeshejiba@163.com 微信号:biyezuopin QQ:2922748026  
本站毕业设计毕业论文资料均属原创者所有,仅供学习交流之用,请勿转载并做其他非法用途.如有侵犯您的版权有损您的利益,请联系我们会立即改正或删除有关内容!