摘要
目前我国许多煤矿矿井已经转向中、深部开采,矿井提升设备作为煤矿的关键设备,在矿井机械化生产中占有重要地位。制动器是提升机(提升绞车)的重要组成部分之一,直接关系着提升机设备的安全运行。
多绳摩擦提升机具有体积小、质量轻、安全可靠、提升能力强等优点,适用于较深的矿井提升。本文针对JKMD型(4.5米4多绳摩擦轮)提升机,对其制动系统和滚筒进行设计。
提升机械是用作沿井筒提升或放下矿物、人员和设备的一种机械,我国把缠绕直径在2m以上的提升设备称之为提升机械;缠绕直径在2m以下(不包括2m)的称为绞车(尽管这两者的结构基本相同)。有的国家(例如联邦德国),把最大提升速度大于4m/s的提升设备称之为提升机械;小于4m/s的称为绞车;这些说法,都从一个侧面或一定程度上说明了提升机械的功能和特征。但是,这些说法并没有给提升机械以严格的定义。因为提升机械的功能不仅可以联系井上、井下之间,而且也可以联系井下之间。另外,联系井上、井下的机械也步限于提升机械,胶带输送机也可以作为联系井上、井下之间的搬运机械。
在对提升机的制动器选型过程中,因盘式制动器是近年来应用较多的一种新型制动器,它以其独特的优点及良好的安全性能被广大用户认可,特别是在结合了液压系统和PLC 控制之后,液压系统和PLC 超强的控制性能为盘式制动器的应用提供了巨大的工作平台。制动盘的制动力,靠油缸内充入油液而推动活塞来压缩盘式弹簧来实现。
液压盘式制动器作为最新一种制动器,具有许多优点,所以它在现代多种类型提升机中获得广泛的应用。它具有制动力大、工作灵活性稳定、敏感度高等特点,对生产安全具有重要意义。
关键词:提升机;多绳摩擦;制动器;设计;液压传动。
Abstract
Currently many of our coal mine has turned to deep mining. Mine coal upgrading equipment as the key equipment holds an important position in mechanized production of the mine. The brakes are one of the important components of a direct bearing on Hoist the safe operation of equipment.
Multi-rope friction hoist with small size, light weight, safe, reliable, and strong ability to upgrade apply to the deeper mine hoist. In this paper, the braking system for JKMD type (4.5 meters over four-rope friction round) hoist have been designed.
Lifting machinery is used for lifting or lowering the wellbore along a mechanical mineral, personnel and equipment, the winding diameter of more than 2m lifting device called a lifting machinery; winding diameter 2m or less (not including 2m) is called a winch (although both structures substantially the same). Some countries (for example, Federal Republic of Germany), the maximum lifting speed is greater than 4m / s lifting device called a lifting machinery; less than 4m / s is called a winch; these claims are from one side or to some extent that has improved mechanical the functions and features. However, these claims are not to upgrade machinery to a strict definition. Because not only can enhance the function of mechanical contact Inoue, between the underground, but can also be a link between underground. In addition, the contact surface and underground machinery also limited steps to enhance mechanical, belt conveyor can be used as contact Inoue, between handling machinery underground.
In the hoist brake selection process, because in recent years disc brake is used in the new brakes It's unique strengths and good safety performance recognized by the majority of users. Especially in the light of the hydraulic control system and the PLC, Hydraulic System and PLC super performance of the disc brake provides a tremendous platform for the work. Brake disc braking force and rely on the fuel tank filled with oil that drives the piston to compress spring to achieve Disc.
Hydraulic disc brakes as the latest development of a brake, which has many advantages. Therefore it in a modern aircraft types to upgrade gain wider application. It is the braking force, flexibility stability, high sensitivity; on production safety is of great significance.
Keywords: Hoist; Multi-rope friction; Brake; Design; Hydraulic drive.
目录
前言 1
1 矿井提升设备 3
1.1 提升机的定义 3
1.2 提升机的分类 3
1.2.1 按用途分 3
1.2.2 按拖动方式分 3
1.2.3 按提升容器类型分 4
1.2.4 按井筒的倾角分 4
1.2.5 按提升机类型分 4
1.3 提升机的制动装置的功用、类型 12
1.3.1 制动装置的功用 13
1.3.2 制动装置的类型 13
1.4提升机型号的选用及制动器的设计类型 14
1.4.1 提升机的选用 14
1.4.2 制动器的设计类型 14
2 提升机的选型计算(4.5米4多绳摩擦轮) 16
2.1 工作参数 17
2.2 速度图 18
2.3 变位重量 20
2.4 力图 20
2.5 等效力 23
2.6 启动力矩与等效力的比例 23
2.7 有效功率 23
2.8 电机最大轴功率及选型 23
2.9 液压站工作原理 25
2.9.1 提升机液压站系统 25
2.9.2 液压站系统原理图如图2-6所示 25
3 卷筒的结构设计及尺寸确定 28
3.1卷筒的分类 28
3.2卷筒绳槽的确定 29
3.3卷筒的设计 30
3.3.1 卷筒节径 设计 30
3.3.2 卷筒的长度设计 31
3.3.3 卷筒壁厚设计 31
3.4 卷筒强度计算 32
4 卷筒轴的设计计算 34
4.1 卷筒轴的受力分析与工作应力分析 34
4.2 卷筒轴的设计计算 35
4.2.1 心轴的疲劳强度计算 35
4.2.2 心轴的静强度计算 37
5 提升机制动装置的结构设计 38
5.1 制动装置的有关规定和要求 38
5.2 提升机制动器主要类型 40
5.2.1 块式制动器 40
5.2.2 盘式制动器 42
5.3 盘式制动器的结构及工作原理 43
5.3.1 盘式制动器的布置方式 43
5.3.2 盘式制动器的结构 44
5.4 制动器的设计计算 46
5.4.1 确定在工作状态下所需要的制动力 46
5.4.2 确定制动器数量 53
5.4.3 碟型弹簧的选型计算 58
5.4.4 制动器液压缸的结构与设计计算 65
5.5 制动器的强度校核 77
5.5.1制动力整定计算 77
5.5.2 液压站油压整定计算 80
6 制动器的工作可靠性评定 82
6.1 盘式制动器的安装要求及调整 82
6.1.1 盘式制动器的要求(包括零部件) 82
6.1.2 盘式制动器闸瓦间隙的调整 83
6.2 制动器的故障模式及可靠性图框 85
6.3 制动器的优化设计及工作可靠性评定 87
6.3.1 设计变量 88
6.3.2 优化策略 88
6.4 制动器的维护可靠性评定 90
7 结论 93
总 结 94
参考文献 95