参考实例2
PLC在液压式自动夹轨器中的应用
三峡大学职业技术学院机械系
李斌贵 付正江邓唯一丁岩
(三峡大学职业技术学院 湖北宜昌市 443000)
自动夹轨器装置是一种自动将门式起重机锁定在轨道上,防止受意外推力时而不滑动的安全装置。该装置由机械夹轨钳、液压泵站、自动控制柜三部分组成。以电力为能源,以液压能为动力,通过机械臂实现夹紧。是典型的机――电――液一体化产品。
自动控制夹轨器装置是将液压泵站的液压能转化为机械能。液压油缸借助液能将活塞杆推出,经活塞杆将连杆向外压张开,迫使连杆压缩设置在其内部的储能弹簧,再经夹钳臂将弹簧的弹力传递给夹钳的钳口铁,使之将钢轨夹紧,尔后进行自锁,保持夹紧力始终不偏离设计值,具体构造见(夹轨器示意图)。
液压系统设计两个油缸共用一个液压泵站,油泵置于油箱内,电动机用立式电动机,工作压力则由溢流阀保证,具体构造见(夹轨器液压原理图)。
控制系统采用西门子PLC控制。具体见(电气原理图)。
该装置只在大车行走状态是自动开启的,其它状态自动夹紧。在不改变原机操作动作的前提下,通过PLC系统将起重机行走机构的行走与停止、制动器的开启与制动、夹轨器的开启与夹紧等动作实行自动控制,免除了执行防风过程中的烦琐动作,使防风性能每分每秒都得到保障。主动防风,能抗御十二级以下大风,还改善了行走机构的功能,提高了整机的稳定性及安全性。
一、技术参数:
1、 机械钳部分性能
一付夹钳的夹紧力:20吨;钳口开度:20o;开钳时间:7秒;夹钳时间:10秒;开钳后夹钳最低处距钢轨面:30毫米;防风等级:12级。
2、 液压机构性能:
液压泵站电动机功率:5.5KW; 转速:1440转/分;额定压力:15MPa;工作压力:10-12MPa;额定流量:25L/min;油品型号:H46抗磨液压油;贮油量:40L。
3、 电器控制部分性能:
动力电源电压:380V;控制电压:直流24V;PLC:SM——24R。
一、 该装置设计有以下特点:
1.夹轨器的夹紧机构是闭锁设计,使夹紧后的夹紧力不受其它因素的影响,始终恒定在设计值内。
2.在可压缩蓄能连杆内设置了蓄能弹簧,连杆可以随弹簧的压缩变短,满足了过死点设计所需的技术条件,而且具有补偿功能。
3.一台门机上安装四副夹轨器,总夹紧力达80T,可抵御12级大风;同时夹钳钩头设计,可防整车倾翻。
4.夹轨器开钳后可向上升起100mm,使其最低处距钢轨面保持30mm距离,机车行走时夹钳与轨道不会发生干涉。
5.夹轨器的引导轮能克服钢轨的不平度及不直度的缺陷,使夹轨器的中心线与轨道的中心线及钳口与钢轨面的高度保持在设计值内。
6.该装置的自动控制系统将门塔机行走机构的各项功能及夹轨器的各个动作采用程序逻辑自动控制,减轻了大车行走机构启动时的冲击,使行走机构的功能有所改善。
7、该装置有故障自动检测功能,显示故障结果;整机体积小、重量轻、夹紧力大的特点。
三、液压系统
液压系统如图1所示。
图二 夹轨器液压原理图
1、 低压阀 2、二位二通电磁换阀 3、齿轮泵先导式调压阀 4、压力表 5、油缸 6、液压锁
7、三位四通电磁换向阀 8、溢流阀
四.PLC控制部分
PLC外围接线图如图1所示。根据塔机大车运行控制技术要求,PLC的输入信号有11个,输出信号9个,共20个点。整个PLC控制系统程序估计有120步,而且不需要与上位机通信。因此选用中外合资华光电子有限公司的SM-24R PLC。其I/Q分配如下:
输入点: 输出点
电机保护信号: I0 零位指示: Q0
夹钳限位: I4 备用: Q1
开钳限位: I5 夹钳电磁阀: Q2
大车右行(现): I6 开钳电磁阀: Q3
大车左行(现): I7 警声灯: Q4
大车右行限位: I10 液压站: Q5
大车左行限位: I11 电缆卷筒: Q6
急停信号: I12 (大车)制动器: Q7
大车右行(联): I13 大车右行: Q10
大车左行(联): I14 大车左行: Q11
主令控制器零位: I15
图三 PLC外围接线图
图3 PLC控制流程图
4、系统工作原理
工作程序由控制柜进行自动控制,具体程序见下图。
常闭式自动控制夹轨器装置需行走时,由操作手扳动行走开关的手柄,给自动控制中心发出行走指令,自动控制中心接到行走指令后,首先启动警告装置,后启动液压泵(图二中3),开启电磁阀(图二中7)将液压泵输出的液能通过换向阀经管道输送给液压油缸(图二中5)的下腔,(见夹轨器液压原理图中的3、7、5)使液压油缸的活塞回缩,经中间铰轴(图一中8)带动连杆(图一中7)在支架滑道向上移动,再经连杆销(图一中A)拉动夹轨钳臂使其向内收拢,并绕夹钳轴(图一中4)旋转开启夹钳(图一中6),待钳口铁(图一中2)与钢轨(图一中1)完全脱开时,液压油缸将两只夹钳提高至上止点,闭合上止点行程开关,开启电磁溢流阀并将可以行走的信息反馈给自动控制中心,自动控制中心接到信息后先松开行走制动器,然后启动行走电动机,驱动行走机构使机车在轨道上移动。
行走需停止时,由操作手将行走开关的手柄扳回中间位置,自动给控制中心发出终止行走的指令,自动控制中心接到终止行走指令后,首先切断行走电动机电源,使机车进入自由滑行状态,当滑行基本结束时,自动制紧行走制动器,然后启动液压油泵、开启电磁换向阀,将泵输出的高压油液经油液通道输送给液压油缸(图二中5)的上腔,使液压油缸的活塞向外伸出,推动中间铰接轴(图二中3)在支架滑道中向下移动,夹轨钳依自身重量沿夹轨面在夹轨钳的滑道中下坠至夹轨钳滑道的上止点两侧;液压油缸的活塞由于受高压油液的充入继续向外伸出,经连杆(图一中7)推动夹轨钳臂上端向外张开,同时绕夹钳轴(图一中4)旋转,使其下端向内收拢,在A、B连线上方将钳口铁(图一中2)与钢轨(图一中1)贴紧;此时液压油缸的活塞仍继续向外伸,而夹轨钳(图一中6)受夹钳轴(图一中4)的限制及钢轨的支撑,下端不可能再向内收拢,因此当液压油缸的巨大压力压迫连杆(图一中7)时,连杆则将设置在其内部的弹簧压缩,使A、C两点及B、C两点的长度缩短,并在A、B连线的上方约10毫米处将弹簧全部压缩,夹轨钳的钩头扣住了钢轨,此时的夹紧力已满足技术要求。尔后在液压油缸的推力下,将中间铰接轴(图一中8)推向下止点,使C点低于A、B连线进行机械式自锁,保持夹紧力不被释放。同时自动切断行走机构电源。
由于夹轨器与机车是通过夹钳轴后端的孔(图一中11)经轴以滑动连接,机车行走时,拖(推)动夹轨器同步移动时,引导轮(图一中3)在夹轨器的重量压力下可沿蛇形轨道滚动,并经引导轮支架(图一中5)、夹钳轴(图一中4)带动夹轨器整体在连接轴(图一中11)上作径向往复滑动,同时还可沿轨道面浮动,因此夹轨钳与轨道的中心线及夹轨钳的最低点与轨道面的高度始终被控制在设计值内,行走中夹轨钳不会与轨道产生碰擦,从而使两只夹钳口的夹紧力是一致的。
该装置在其钳口铁(图一中2)的下端设计了一个钩头,此钩头在夹轨钳(图一中6)夹紧钢轨(图一中1)后能扣住钢轨,可防止夹轨钳(图一中6)沿自身的滑道意外上移而将夹紧力释放。
四、实际使用情况:
2001年三七八集团七月份第一次受大风影响,在三峡大坝厂房施工的三台门机撞在一起,造成严重损失及后果;同年8月份,水电八局在三峡永久船闸施工的一台门机受大风影响而倾翻,造成该机报废,并砸坏一台200T的汽车式起重机。由于葛洲坝工程局的门机移至三峡大坝120栈桥施工,为了避免发生类似的事故,同时又为了消除手动夹轨器的缺陷,改善行走机构的技术条件,增强安全性能,确保设备的安全运行,三峡指挥部设备调配中心研究设计。
常闭式夹轨器安装在三峡工地120栈桥上的四台SDTQ1800/60型高架门机上,常开式安装在一台MQ540/30丰满门式起重机上。两种型号的夹轨器,经受了三峡三次大风的考验。大风过后测量,夹轨器未出现松动现象。使用证明,性能良好,夹紧牢固,不但增强了防风性能,而且改善了行走机构的性能。在未安装夹轨器前,当回转停止时,由于惯性力的作用,产生了巨大的冲击力,常使台车联动轴扭断或减速器固定底盘脱裂。行走台车在钢轨上的滑移量在100~400 mm ,加装后,消除了上述现象。通过技改,降低了设备的故障率,提高了设备的可靠性,为葛洲坝集团在三峡大坝建设中顺利完成任务,提供了有效的设备技术保障。这一成功经验,已被业主广泛安装在大型起重机上,为三峡三期工程提供了可靠的设备。
当前国内外同类设备如丹麦KROLL塔式起重机夹轨器,开启后可升降,但只能扣住钢轨,不能夹紧,且受轨道固定螺栓影响,若遇螺栓必然被顶住,夹钳放不下去,因此扣不住钢轨。又如上海港机的液压夹轨器,开启后不能升降,只能供钢轨凸出轨基平面的轨道使用,对于轨面与轨基高度一样的轨道则无法使用,且夹紧力小。老式的手动夹轨器正常情况不用,遇到大风预报后,由人工扳动夹紧,因平时用的少,造成诱蚀而无法工作,给安全留下隐患。本文中介绍的装置,不受轨道形式的限制,始终能自动夹紧、且夹紧力大,故障率仅为二千分之一,值得大力推广应用。
参考文献: 1.杨成康 工程机械发动机与底盘构成 机械工业出版社 1995、9
2.廖常初 《可编程序控制器应用技术》 重庆大学出版社 1992.7
作者简介: 李斌贵 男 高级讲师 生于1954年 1982年毕业于华北水电学院
联系: 0717——8633208 0717-6718310
邮箱: sanxialibinggui2004@tom.com
2004、9、11、
|