基于LBS的兴趣推荐平台设计与实现
摘 要
本文设计并实现了一个基于位置服务(LBS)的兴趣推荐平台,该平台通过深度挖掘用户的兴趣点与位置信息,结合协同过滤算法,为用户提供个性化且精准的兴趣推荐服务。平台包含用户管理、主页展示、社区交流、问答互动、兴趣探索、过往分享以及兴趣走廊等核心功能模块。管理员负责平台信息的安全存储与管理,同时对系统进行管理与更新维护,并在用户交友推荐方面拥有相应的操作权限。
在平台开发中,我们采用Mysql数据库进行数据存储,SpringBoot框架作为后端开发的基础,确保了系统的稳定性和可扩展性。Tomcat服务器为平台提供了高效稳定的服务支持。此外,我们使用ECLIPSE作为开发平台,为开发工作提供了便捷的工具支持。
在推荐算法方面,平台突出协同过滤算法与LBS技术的结合应用。我们基于用户的历史选择和行为数据,运用协同过滤算法分析用户的兴趣偏好,为用户推荐符合其兴趣的内容。同时,结合LBS技术,我们能够在同城范围内识别并推荐具有相同兴趣的用户,从而极大地提升了推荐的精准度和用户满意度。
关键字:位置服务(LBS);社交兴趣推荐;协同过滤算法;SpringBoot框架;Mysql数据库
Abstract
In this paper, an interest recommendation platform based on location service (LBS) is designed and implemented. By deeply mining users' interest points and location information, the platform provides users with personalized and accurate interest recommendation service by combining collaborative filtering algorithm. The platform includes core function modules such as user management, home page display, community communication, question and answer interaction, interest exploration, past sharing and interest corridor. The administrator is responsible for the safe storage and management of the platform information, and at the same time, to manage and update the system, and has the corresponding operation authority in terms of user dating recommendation.
In the platform development, we adopted the Mysql database for data storage, and the SpringBoot framework serves as the basis for backend development, ensuring the stability and scalability of the system. The Tomcat server provides highly efficient and stable service support for the platform. In addition, we use ECLIPSE as a development platform, which provides convenient tool support for development work.
In terms of recommendation algorithm, the platform highlights the combined application of collaborative filtering algorithm and LBS technology. Based on the users 'historical selection and behavioral data, we use the collaborative filtering algorithm to analyze the users' interest preferences, and recommend the content that meets their interests for the users. At the same time, combined with LBS technology, we can identify and recommend users with the same interests within the same city range, thus greatly improving the accuracy of recommendation and user satisfaction.
Keywords: Location service (LBS); social interest recommendation; collaborative filtering algorithm; SpringBoot framework; Mysql database
目 录
第1章 绪 论
1.1选题背景及意义
1.1.1 选题背景
1.1.2 选题意义
1.2国内外研究现状及发展趋势
1.2.1 国内研究现状
1.2.2 国外研究现状
1.2.3 发展趋势
1.3 研究的内容
第2章 关键技术
2.1 Java介绍
2.2 B/S模式
2.3 MySQL数据库
2.4 SpringBoot框架
2.5 Vue开发技术
2.6 JavaScript简介
2.6 协同过滤算法简介
第3章 系统分析
3.1 系统设计目标
3.2 系统可行性分析
3.3 系统功能分析和描述
3.4 系统UML用例分析
3.5系统流程分析
3.5.1添加信息流程
3.5.2操作流程
3.5.3删除信息流程
第4章 系统设计
4.1 系统体系结构
4.2 数据库设计原则
4.3 数据表
第5章 系统实现
5.1管理员功能模块
5.2 前端用户模块
第6章 系统测试
6.1测试定义及目的
6.2性能测试
6.3测试模块
6.4测试结果
总 结
致 谢
参考文献