设计 任务书 文档 开题 答辩 说明书 格式 模板 外文 翻译 范文 资料 作品 文献 课程 实习 指导 调研 下载 网络教育 计算机 网站 网页 小程序 商城 购物 订餐 电影 安卓 Android Html Html5 SSM SSH Python 爬虫 大数据 管理系统 图书 校园网 考试 选题 网络安全 推荐系统 机械 模具 夹具 自动化 数控 车床 汽车 故障 诊断 电机 建模 机械手 去壳机 千斤顶 变速器 减速器 图纸 电气 变电站 电子 Stm32 单片机 物联网 监控 密码锁 Plc 组态 控制 智能 Matlab 土木 建筑 结构 框架 教学楼 住宅楼 造价 施工 办公楼 给水 排水 桥梁 刚构桥 水利 重力坝 水库 采矿 环境 化工 固废 工厂 视觉传达 室内设计 产品设计 电子商务 物流 盈利 案例 分析 评估 报告 营销 报销 会计
 首 页 机械毕业设计 电子电气毕业设计 计算机毕业设计 土木工程毕业设计 视觉传达毕业设计 理工论文 文科论文 毕设资料 帮助中心 设计流程 
垫片
您现在所在的位置:首页 >>毕设资料 >> 文章内容
                 
垫片
   我们提供全套毕业设计和毕业论文服务,联系微信号:biyezuopin QQ:2922748026   
基于机器学习的文本情感分析设计与实现 任务书
文章来源:www.biyezuopin.vip   发布者:毕业作品网站  

基于机器学习的文本情感分析设计与实现

设计的主要内容:

随着社交媒体、电子商务和在线评论等大规模文本数据的不断增加,对文本情感分析的需求也日益增加。文本情感分析是通过分析文本中的情感信息,将文本划分为积极、消极或中性等情感类别的过程。这项研究具有重要的应用价值,例如舆情监测、产品推荐、舆情预警、情感分析等。传统的文本情感分析方法面临一些挑战。首先,人工标注训练数据需要大量的时间和人力成本。由于文本数据庞大且多样性,手动标注情感类别成为一项繁重且耗时的任务。其次,传统的规则和词典基础的方法在处理复杂文本和新兴语言时往往表现不佳。规则和词典往往难以捕捉到隐含在文本中的语义和上下文信息。此外,情感的主观性和多样性使得情感分析任务更具有挑战性。

基于此,为解决上述问题,机器学习技术被引入到文本情感分析中。机器学习方法通过分析和学习大规模的训练数据,构建模型来预测文本的情感类别。这种方法不仅可以自动化标注过程,减少了人力成本,而且还可以自动学习文本中的语义和上下文信息,提高情感分类的准确性和泛化能力。机器学习在文本情感分析中的应用有许多不同的方法,包括支持向量机(SVM)、朴素贝叶斯分类器(Naive Bayes)、决策树(Decision Tree)和深度学习模型等。这些方法在研究者的努力下得到了不断改进和优化,取得了一定的研究成果。

机器学习在文本情感分析中的有效性,本研究旨在设计和实现基于机器学习的文本情感分析系统,以应对大规模复杂文本数据的情感分析需求。通过构建适用于文本数据特点的机器学习模型并进行训练和优化,将实现更准确、高效和可扩展的文本情感分析。

要求:

1. 具备独立查找、分析相关文献资料能力。以基于机器学习的文本情感分析设计与实现为主题,查阅检索中外文献16篇(中文文献不少于15篇,外文文献不少于5篇),进一步提炼文章主要观点;

2.能够综合运用所学专业知识,根据基于机器学习的文本情感分析设计与实现研究现状和应用现状,独立地提出问题、分析问题和解决问题;

3.做到语言通顺,格式规范。

4.撰写不少于8000字的学术论文(毕业设计)。

主要参考文献:

[1]贾中昕.基于深度学习的短文本情感分析系统的设计与实现[D].南京邮电大学,2022.

[2]陈波.基于机器学习的评论情感分析系统设计与实现[D].太原理工大学,2021.

[3]王晨阳.基于深度学习的文本情感分析系统的设计与实现[D].河北师范大学,2020.

[5]谭有新,滕少华.短文本特征的组合加权方法[J].广东工业大学学报,2020,37(05):51-61.

[6]王烨,左万利,王英.基于隐喻词扩展的短文本聚类算法[J].吉林大学学报(理学版),2018,56(06):1447-1452.

[7]李丽华,胡小龙.基于深度学习的文本情感分析[J].湖北大学学报(自然科学版),2020,42(02):142-149.

[8]文爽.基于深度学习的用户评论情感分析系统设计与实现[D].北京邮电大学,2019.

[9]张俊东. 基于机器学习的微博情感分析及应用[D].北京邮电大学,2018.

[10]田竹. 基于深度特征提取的文本情感极性分类研究[D].山东大学,2017.

[11]任秋芳. 商品评论情感分析系统设计与实现[D].上海交通大学,2020.

[12] Weibo Sentiment Analysis based on Double-Layer Attention Mechanism and Bi-LSTM[J]. Qing Xue; Xichuan Hu.International Core Journal of Engineering,2021(2)

[13] Sentiment Analysis using Neural Network and LSTM[J]. Srinivas Akana Chandra Mouli Venkata;Satyanarayana Ch.;Divakar Ch.;Sirisha Katikireddy Phani.IOP Conference Series: Materials Science and Engineering,2021

[14] P. A ,A. S ,R. R I , et al.Design of text sentiment analysis tool using feature extraction based on fusing machine learning algorithms[J].Journal of Intelligent Fuzzy Systems,2021,40(4):6375-6383.

[15] Naithani K ,Raiwani P Y .Realization of natural language processing and machine learning approaches for text‐based sentiment analysis[J].Expert Systems,2022,40(5):

  全套毕业设计论文现成成品资料请咨询微信号:biyezuopin QQ:2922748026     返回首页 如转载请注明来源于www.biyezuopin.vip  

                 

打印本页 | 关闭窗口
本类最新文章
基于PLC的罐装加工过程为全自动 基于Python电影推荐系统设计 基于西门子S7-200PLC四层
音乐流派预测 任务书 基于PLC的鸡禽自动喂食机控制系 高速离心式果汁机的结构设计 评阅
| 关于我们 | 友情链接 | 毕业设计招聘 |

Email:biyeshejiba@163.com 微信号:biyezuopin QQ:2922748026  
本站毕业设计毕业论文资料均属原创者所有,仅供学习交流之用,请勿转载并做其他非法用途.如有侵犯您的版权有损您的利益,请联系我们会立即改正或删除有关内容!