主要参考资料
|
主要参考资料: [1] Ye, Jin et al. “Attention-Driven Dynamic Graph Convolutional Network for Multi-label Image Recognition.” ECCV (2020). [2] He, K., Zhang, X., Ren, S., & Sun, J. (2016). “Deep residual learning for image recognition.” In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778). [3] Wu, Xiangping et al. “AdaHGNN: Adaptive Hypergraph Neural Networks for Multi-Label Image Classification.”Proceedings of the 28th ACM International Conference on Multimedia (2020): n. pag. [4] Ganda, D., & Buch, R. (2018). A Survey on Multi-Label Classification. Recent Trends in Programming Languages, 5(1), 19-23. [5] Zhang, Junjie et al. “Multi-label Image Classification With Regional Latent Semantic Dependencies.” IEEE Transactions on Multimedia 20 (2018): 2801-2813. [6] Wang, J., Yang, Y., Mao, J., Huang, Z., Huang, C., & Xu, W. (2016). “Cnn-rnn: A unified framework for multi-label image classification.” In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2285-2294). [7] Wang, Y., He, D., Li, F., Long, X., Zhou, Z., Ma, J., & Wen, S. (2019). “Multi-Label Classification with Label Graph Superimposing.” arXiv preprint arXiv:1911.09243 [8] Chen Z M , Wei X S , Wang P , et al. Multi-Label Image Recognition With Graph Convolutional Networks[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2020. [9] Gao, Yue et al. “Hypergraph Learning: Methods and Practices.” IEEE transactions on pattern analysis and machine intelligence PP (2020): n. pag. [10] Feng, Yifan et al. “Hypergraph Neural Networks.” AAAI (2019): n. pag.
|