风力发电对电力系统的影响
简奥斯丁,费力克斯
(电力系统及发电设备控制和仿真国家重点实验室,纽约市曼哈顿区)
摘要:风力发电依拖于气象条件,并逐渐以大型风力发电场的形式并入电网,给电网带来各种各样的影响。电网并未专门设计用来接入风电,因此如果要保持现有的电力供应标准,不能避免地需要进行一些相应的调整。讨论了在风力发电场并网时遇到的各种问题。由于风力发电具有大容量、动态和随机的特性,它给电力系统的有功和无功潮流、电压、系统稳定性、电能质量、短路容量、频率和保护等方面带来多种影响。针对这些问题提出了相应的解决建议和措施,以及更好地利用风力发电。
关键词:风力发电;电力系统;影响;风电场
1.引言
人们普遍都能够接受,可再生能源发电是未来电力供应的必然趋势。由于电力需求增长快速,对以化石燃料为基础的发电是不可持续的。与之相反,风力发电作为一种有前途的可再生能源受到了很多关注。当由于工业的发展和在世界大部分地区的经济增长而发电的消费需求一直稳步增长时,它有减少污染排放和降低不可替代的燃料储备消耗的潜力。
当大型风电场(几百兆瓦)成为主流时,风力发电越来越受欢迎。2006年间,世界风能装机容量从2005年的59091兆瓦达到74223兆瓦。在2006年极大的生长表明,决策者开始重视的风能发展能够带来的好处。由于到2020年12%的供电来于1250GW的安装风力发电机,将减少排放累积10771000000吨二氧化碳[1]。
大型风电场的电力系统具有很大的容量,动态随机性,这将会挑战电力系统的安全性和可靠性。而提供电力系统清洁能源的同时,风电场也会带来一些对电力系统不利的因素。风力发电的扩展和风电在电力系统的比重增加,影响将很可能成为风力集成的技术性壁垒。因此,应该探讨其影响和提出克服这些问题的对策。
2.风力发电发展现状
从全球风能委员会(GWEC)的报告中,拥有最高装机容量总数的国家是德国(20621兆瓦),西班牙(11615兆瓦),美国(11603兆瓦),印度(6270兆瓦)和丹麦(3136兆瓦)。世界范围内十三个国家现在可以算是达到1000兆瓦的风力发电能力,法国和加拿大在2006达到这一阈值。如图1所示,直到2006年12月世界累计装机容量前10名[2]。
中国开始发展风电的时间很晚。只有在90年代它才走向市场化的发展道路和规模建设。这些年新增累积装机容量如图2显示。单一机组容量从100千瓦到200千瓦,300千瓦600千瓦,750千瓦,1500千瓦逐步增加。
在2006年中国通过安装风能的总容量达到1347兆瓦,增加了一倍以上的总容量,比去年的数值增长了70%。这给中国带来多达2604兆瓦的电能,使中国成为世界第六大的市场。中国市场在2006年大幅增长,这预计将继续增长并加快增长。根据经批准的和在建设中的项目,在2007年将安装超过1500兆瓦。到2010年底在中国的风电目标为5000兆瓦[3]。
图1 到2006年12月世界累计装机容量
图2 在中国累计和新增加安装的风力发电能力
3.风力发电项目的特点
从风能的角度来看,风能资源的最显特点是其随机不定性。风电场输出的随机变化主要源于风速的波动和方向。无论是地理性的和时间性的,风是很易变的。另外,无论是在空间和时间上,这种变化性持续的范围非常广泛。
由于时间和高度的影响,风速不断变化。风变化的时间尺度显示在图3的风力频谱图上[4]。从一秒到一分钟的范围内,阵风引起动荡的高峰。每日的峰值取决于每天的风速变化而天气高峰取决于天气变化,通常因每天或每周而异,但同时也包括季节性周期。
图3风谱,布鲁克海文国家实验室工作
从电力系统的角度来看,湍流高峰可能会影响风力发电的电能质量。然而,昼夜和天气的高峰可能会影响电力系统的长期的平衡,在这样的系统中风速预测起着非常显著作用。
另一个重要问题是风能资源的长期变化。应以加速到中心高度的风来计算风电场的输出。大量风速测量表明,风速在一年中大多数是柔和的,介于0和25米/秒的概率是相当大的;年均风速受制于威布尔分布[5],如公式(1)。
(1)
其中:V是平均风速;k为形状参数;c是尺度参数。
风力发电机的输出之间的关系和风速集线器V的高度可以近似表示为风力发电机的输出与风速或分段函数的曲线,如公式(2)。
(2)
其中:是额定功率的风力发电机组的输出;V是风速达枢
纽的高度VCI是停机风速;VCO被切出风速;VR被评为风速。
4.风力发电对电力系统的影响
在电力系统中风力发电面临大型风电场对电网一体化的基本技术限制。风力发电对电力系统的影响包括有功和无功电流,电压,系统稳定性,电能质量,短路容量和基础设施的特点由于高容量的风力发电的动态和随机性能。在技术上,它通过以下方式影响和必须详细研究:
(1)有功和无功电流。
风力发电是一个间歇性和随机的电源,将功率流复杂化。由于为了捕获更多的风能能源,许多风电场建成远离负荷中心,总有传输风力发电一些的障碍。当引进额外的风力发电时一些传输或配电线路和其他电气设备可能过载。因此,应确保互相连接传输或配电线路不过载。有功和无功要求,都应予以调查。无功功率应不仅在PCC中产生,但也通过整个网络产生,并应本地补偿[6]。
用于常规发电机的分析的方法是确定的,而忽略了不确定性的风速和负荷预测。因此,概率性的方法是比较适合风力发电的。约束以概率形式描述,并且预期参数值,如电压和功率,可以被计算。
(2)电压调节
一旦风电场已经确定了地点,连接到电网的点也必须确定。小型风力发电场,可以在低电压下连接,从而节省了开关设备、电缆和变压器的成本。如果拟议的发展规模太大导致不可以与当地分布电源连接,进而不能满足较高的电压传输网络的需要[7]。
在电力系统中随着风力发电安装总容量的增加,风力发电的变化会引起电压变化,特别是如果并入电网,这可能不是专门设计用于迎合重要和可能快速变化的负载,这是由风力发电变化引起的。因此,需要采取监管措施,使电压保持在指定的范围内。然而为了控制电压,可能导致增加对无功功率的辅助服务[8]。
(3)系统的稳定性。
在风力发电的电力系统中,电压稳定和频率的稳定性都受到风能功率集成影响,这不仅是因为风力发电的加入将改变流量分布,也因为风力发电机与传统的同步机无论是在稳态或暂态状态时相比表现不大有同[9]。
对于目前的风力发电场,当发生干扰时,保护操作通常是切断风电场与电网之间的连接。因此,在这种时侯的暂态稳定性是非常重要的,尤其是与大型风电场的有机结合时最为重要。然而,由于电网结构,风能也可能使电源集成系统的瞬态稳定性变差。因此,不同的电力系统,暂态稳定性应分别进行分析。
固定速度的风力涡轮机输出有功功率时,它吸收无功功率。“风电场无功功率的整体需求是相当大,从而导致减少在PCC附近地区的电压稳定。与此相反,双馈变速风力发电机组对无功功率有一定的控制能力。根据不同的操作和控制计划,这种风力发电机组可以通过吸收或输出无功功率控制电压,有利于电压的稳定。电压稳定也与短路容量相关,传输的PCC行比R / X和在风力发电场使用的无功补偿方法有关。
(4)电能质量。
风力发电的波动对相关电源(AC或DC)的传输、供电质量有直接的影响。结果,大量的电压波动,可能会导致电压在调控范围外变化,以及违反闪烁和其他电源的质量标准。在连续的运行和开关操作,风力发电机组,引起电压波动和闪烁,这些因素是风力发电影响电网电能质量的主要因素。对于变速风力涡轮机和恒定频率转换器造成的谐波问题,也应考虑。
风力涡轮机对电网干扰有不同的原因,其中大多原因是风力机本体。有关参数列于表1[10]。平均发电量,湍流强度及风切变与气象和地理条件因素相关。所有其他的原因不仅归咎于电器元件的特点,如发电机,变压器等。也是转子和传动系统的空气动力学和机械性能的原因。涡轮形式(即变量与主要固定的速度档位与节距调节)对风力涡轮机和风力发电场的电能质量特性有重要性。
闪烁是由风力发电机组的有功功率或无功功率的的波动造成的。固定速度的风力发电机闪烁的主要原因是塔的尾流。而变速风力发电机,平滑了快速功率波动,塔的尾流不影响输出功率。因此,变速风力发电机组的闪烁一般比定速闪烁风力发电机低。
(5)短路容量。
往往大多数的风力发电场都远离负荷中心建造,这意味着他们之间和其他间的电力系统的电气之间的距离,是相当远的。按照常理说,长电距离越长,使电压变化越大,但短路问题越少[11]。
然而,风力发电场将能够给未来的电力系统运行的短路电流计算带来越来越重要的影响。原因是双重的。一个是上述的事实,风力发电网站通常是远离的传统的电力中心。这意味着短路电流的分布可能产生了很大的变化,导致一个完全不同的短路容量地图。其他事实的原因是,今天,越来越多的风力发电,特别是以所谓的大型风力发电场(数百兆瓦)的形式。将风电场大量的个别单位连接在一起,总代能力将大大上升。
风电场对相邻节点短路能力有很大影响,然而对远离PCC节点的影响不大[9]。因此,当具有大容量的风电场并入电网时,相邻变压器和交换机的容量可能需要增加。应该进一步研究的是如何判断风力发电对现有网络上的电气设备短路电流额定值的影响[12]。
(6)频率调整。
为了在规定的标准范围内控制电力系统频率,要求一些发电厂向电网公司提供频率控制配套服务。然而,风力发电量总额的增加,其变化的频率输出是一个很重要的影响[8]。
(7)保护。
电流在风电场和电网之间的流动是双向的,这是在保护的设计和配置应予以考虑的。无论风力发电机采用何种发电机,风电场的整合将增加电网故障水平,进而影响原有的电网保护装置继电器的设置。这可能需要增加新的保护装置或修改原有保护设备的继电器的设置。尤其是如果风电场连接到配电网络,断路器可能在风电场装机容量增加时产生超负荷[8]。
5.减轻风力发电的影响的对策
无功补偿设备的应用,如静止无功补偿(SVC)和静止同步补偿器(STATCOM)在风力发电中减轻其对电力系统的影响起着重要作用。为了保持电压等级,电网公司可以提供额外的或升级的电压控制设施。无功补偿设备应该安装在风电场升压变电站,这具有快速响应特性,并且可不断调节,如在SVC和STATCOM等。为了减少风力发电造成的电压波动和闪烁,既需要速度控制应加以改善,以便和俯仰角控制最大限度地减少了风力发电机的输出波动,而风力发电机的输出最大化。同时,如在风场安装辅助设备SVC和储能装置也可以减轻电压波动和闪烁。在大多数情况下,快速作用无功补偿设备,包括SVC和STATCOM,应被纳入为提高网络的暂态稳定的设备之中。
从风力发电方面,它可以通过不断的功率因数控制或恒压控制提高电力系统的电压稳定增加风力发电的渗透。从电网方面,这对加强和改变目前的网络参数具有重要意义。以电压源换流器系统(VSC)为基础的高压直流输电(VSC-HVDC系统)是一个不需要任何额外赔偿的传输系统,因为这是转换器的控制固有的[13]。因此,它将是一个很好的工具,它使风力发电成一个网络,即使在一个弱网络中,无需提高点短路比,也能实现。VSC-HVDC的有功功率控制能力,然后是一个完美的处理有源功率/频率控制的工具。它有能力以一个很好的方式处理风电并足以快速反应抵消电压变化,它可以提高系统的稳定性和电能质量。
6.结论
距今25年,风能已经经过很长的时间,它很可能会在未来20年继续推进。有许多关于整合风力发电系统的运作和发展的问题。虽然风力发电取代了产生相当数量能量的传统植物,关注点都集中在了风力发电和电网之间的相互作用上。本文提供了一个概览风力发电对电力系统的影响和相应的对策建议来处理这些问题,为了适应风在电力系统的发电。
参考文献
[1] EWEA.Wind force 12[EB/OL].
[2] GWEC.Global wind energy markets continue to boom-2006 another record year[EB/OL].
[3] Liu Yan,Wang Wei wind power information Technology,2007
[4] Burton T,Sharpe D,Jenkins N,et al.Wind energy handbook[M].Chichester:John Wiley & Sons Ltd,2001
[5] Bowden G J,Barker P R,Shestopal V O,et al.Weibull distribution function[J].Wind Engineering,1983,7(2):85-98
[6] Fan Zhenyu,Enslin J H R.Challenges, principles and issues relating to the development of wind power in China[C].IEEE PES PSCE,2006:748-754
[7] O'Gorman R,Redfern M A.The difficulties of connecting renewable generation into utility networks[C].IEEE Power Engineering Society General Meeting,2003,3:1466-1471
[8] Wang Wei sheng,Chen Mozi.Towards the integrating wind power into power grid in China[J].Electricity,2004,(4):49-53
[9] Chi Yong ning,Liu Yan hua,Wang Wei sheng,et al.Study on impact of wind power integration on power system[J].Power System Technology,2007,31(3):77-81
[10] Ackermann T.Wind power in power systems[M].Chichester:John Wiley & Sons Ltd,2005
[11] Kumano T.A short circuit study of a wind farm considering mechanical torque fluctuation[C].IEEE Power Engineering Society General Meeting,2006:1-6
[12] Strbac G,Shakoor A,Black M,et al.Impact of wind generation on the operation and development of the UK electricity systems[J].Electric Power Systems Research,2007,77(9):1214-1227
[13] Eriksson K,Liljegren C,Sobrink K.HVDC light experience sapplicable for power transmission from offshore wind power parks[EB/OL].