基于ARIMA模型对未来全国进出口总额的预测
【摘要】 随着本国社会经济的快速发,本国对外商业成为人们十分关注的问题。为分析本国出口总额未来的发展趁势,正文根据本国1978-2017年外貿出口总额数据,引到入时间序列中的MA模型,运用ADF检验、ARH检验和M检验等統计检验方法,对本国外出口总额未来的发展趋势进行研究预涮分析,本国外贸出口总额在未来两年呈较快上升趋势。
本论文的关键问题主要是要实现对未来几年内全国进出口总额的预测。首先是要选取合适的模型—ARIMA,并灵活运用,即将预测对象随时间推移而形成的数据序列视为一个随机序列,用一定的数学模型来近似描述这个序列。这个模型一旦被识别后就可以从时间序列的过去值及现在值来预测未来值。现代统计方法、计量经济模型在某种程度上已经能够帮助企业对未来进行预测,其次将找到的相应数据代入预测。
那么首要的问题就是如何选取或者找到近年来合理的全国出口总额的统计,其次在通过ARIMA进行相应的预测。
【关键词】 ARIMA模型,进出口总额,预测分析
Forecast of the total import and export volume of China in the future based on ARIMA model
【Abstract】 With the rapid development of China's social economy, China's foreign trade has become a matter of great concern. In order to analyze the future development trend of China's total export volume, this paper introduces the MA model in time series based on the data of China's total export volume from 1978-2017. By using ADF test, ARH test and M test, this paper makes a preliminary analysis of the development trend of China's total export volume. China's total export volume will show a rapid growth trend in the next two years.
The key issue of this paper is to realize the forecast of the total import and export volume in the next few years. Firstly, we should select the appropriate model - ARIMA, and use it flexibly, that is to say, the data sequence formed by the predicted object over time is regarded as a random sequence, which is approximated by a certain mathematical model. Once identified, the model can predict future values from past and present values of time series. Modern statistical methods and econometric models have been able to help enterprises predict the future to some extent. Secondly, the corresponding data found will be substituted into the prediction. Then the first question is how to select or find the reasonable statistics of the total national exports in recent years, followed by the corresponding forecast through ARIMA.
【Key Words】 ARIMA Model, Total Import and Export, Forecast Analysis
表目录
表4.1 还原实际值结果预测 17
表4.2 预测值和实际值的比较表 17
表5.1 2010年到2017年自回归模型测试数据实际与预测表格 19
表5.2 2010年到2017年二次指数平滑法测试数据实际与预测表格 .20
表5.3 2010年到2017年三种模型测试数据实际与预测表格 .20