评估和提高基于机器学习的网络入侵检测器的对抗鲁棒性
摘要
机器学习(ML),特别是深度学习(DL)技术在基于异常的网络入侵检测系统(NIDS)中得到了越来越多的应用。然而,ML/DL已被证明极易受到敌对攻击,尤其是在此类安全敏感系统中。许多对抗性攻击被提出来评估基于MLS的网络入侵检测系统的鲁棒性。不幸的是,现有的攻击大多集中在特征空间和/或白盒攻击上,这些攻击在现实场景中做出了不切实际的假设,在实践中未能充分证明系统鲁棒性的上限。
为了弥补这一差距,我们首次对灰盒/黑盒攻击进行了系统研究,以评估基于ML的网络入侵检测系统的鲁棒性。我们的工作在以下几个方面优于以前的工作:(i)实用性:所提出的攻击可以在保留其功能的同时,以极其有限的知识和可承受的开销自动变异原始流量;(ii)泛型——所提议的攻击对于使用不同的ML/DL模型和基于非有效载荷的特征评估各种NIDS的鲁棒性是有效的;(iii)可解释性我们提出了一种基于ML的网络入侵检测系统脆弱鲁棒性的解释方法。在此基础上,我们还提出了一种对抗攻击的防御方案,以提高系统的鲁棒性。我们使用不同的特征集和ML/DL模型广泛评估各种NIDS的健壮性。实验结果显示了我们的攻击和防御方案的有趣发现和有希望的结果。
索引术语:网络异常检测、网络入侵检测系统、对抗性机器学习、机器学习安全、规避攻击。
目录
评估和提高基于机器学习的网络入侵检测器的对抗鲁棒性
摘要
一、 导言
二、 相关工作
三、 背景和动机
四、 攻击方法
五、 生成对抗特征
六、 变异恶性流量
七、 防御模式
八、 实验评价
十、结论