设计 任务书 文档 开题 答辩 说明书 格式 模板 外文 翻译 范文 资料 作品 文献 课程 实习 指导 调研 下载 网络教育 计算机 网站 网页 小程序 商城 购物 订餐 电影 安卓 Android Html Html5 SSM SSH Python 爬虫 大数据 管理系统 图书 校园网 考试 选题 网络安全 推荐系统 机械 模具 夹具 自动化 数控 车床 汽车 故障 诊断 电机 建模 机械手 去壳机 千斤顶 变速器 减速器 图纸 电气 变电站 电子 Stm32 单片机 物联网 监控 密码锁 Plc 组态 控制 智能 Matlab 土木 建筑 结构 框架 教学楼 住宅楼 造价 施工 办公楼 给水 排水 桥梁 刚构桥 水利 重力坝 水库 采矿 环境 化工 固废 工厂 视觉传达 室内设计 产品设计 电子商务 物流 盈利 案例 分析 评估 报告 营销 报销 会计
 首 页 机械毕业设计 电子电气毕业设计 计算机毕业设计 土木工程毕业设计 视觉传达毕业设计 理工论文 文科论文 毕设资料 帮助中心 设计流程 
垫片
您现在所在的位置:首页 >>计算机毕业设计 >> 文章内容
                 
垫片
   我们提供全套毕业设计和毕业论文服务,联系微信号:biyezuopin QQ:2922748026   
基于Python深度学习的文字检测识别系统 毕业论文+任务书+开题报告+文献综述+外文翻译+软件使用说明书+源码及数据集
文章来源:www.biyezuopin.vip   发布者:毕业作品网站  

摘要
文字是人类交流信息的重要工具,在科技和网络不断发展的今天,文本的方式或者说载体发生了很大的变化,文字不再只停留在书面,更以标识牌,横幅,广告牌等等方式出现我们的生活中,或者说,它们是一张张图片中的文本信息。用计算机检测识别这些信息将给我们的生活带来极大的便利。比如说,自动驾驶技术识别路边的各种指示牌,停车场的车牌识别,扫描录入身份证信息等等。
本毕设课题是属于计算机视觉下的目标检测与识别,对象为自然场景下的各种文本信息,通俗的说就是检测识别图片中的文本信息。由于文本的特殊性,本毕设将整个提取信息的过程可以分为检测、识别两个部分。
论文对用到的相关技术概念有一定的介绍分析,如机器学习,深度学习,以及各种的网络模型及其工作原理过程。
检测部分采用水平检测文本线方式进行文本检测,主要参考了乔宇老师团队的CTPN方法,并在正文部分从模型的制作到神经网络的设计实现对系统进行了较为详细的分析介绍。
识别部分则采用的是Densenet + CTC,对于印刷体的文字有较好的识别。
关键词:深度学习;文本检测;文本识别;CTPN;Densenet;CTC
ABATRACT
The words is an important tool for human beings to exchange information. Today, with the continuous development of science, technology and the Internet, great changes have taken place in the way or carrier of text. The text is no longer confined to writing, but is even more marked with signs and banners. Billboards and so forth appear in our lives, or rather, they are text messages in pictures. Using computer to detect and recognize these information will bring great convenience to our life. For example, autopilot technology recognizes roadside signs, license plate recognition in parking lots, scanning for ID information, and so on.
This topic belongs to the computer vision target detection and recognition, the object is the natural scene of a variety of text information, commonly said is to detect and recognize the text information in the picture. Because of the particularity of the text, the whole process of extracting information can be divided into two parts: detection and recognition.
The paper introduces and analyzes the relevant technical concepts, such as machine learning, in-depth learning, and a variety of network models and their working principles.
The detection part uses horizontal detection text line for text detection, mainly referring to the CTPN method of teacher Qiaoyu team, and in the text part, from the model making to the design and implementation of neural network, the system is analyzed and introduced in detail.
In the part of recognition, Densenet + CTC is used, which has a good recognition of printed text.
Keywords: deep learning; text detection; character recognition; CTPN;Densenet; CTC
目录
1 绪论 1
1.1 选题背景依据 1
1.2 目前的研究现状 1
2技术相关 2
2.1 tensorflow框架 2
2.2 OpenCV 2
2.3 DenseNet(Dense Convolutional Network) 3
2.4 CTC(Connectionist temporal classification) 4
2.5 faster-rcnn框架 4
2.5.1 RPN 4
2.5.2 Fast R-CNN 5
3深度学习基础概念 6
3.1卷积 6
3.2 池化 7
3.3 Padding(填充) 8
3.4卷积神经网络 8
3.5 VGG16模型 9
3.6 LSTM模型 10
4  系统详细设计 13
4.1 基本流程概述 13
4.2 图像预处理 14
4.3模型训练 14
4.3.1 数据集制作 14
4.3.2 模型制作 15
4.4 文本检测 16
4.4.1 检测过程综述 17
4.4.2 feature map(W*H*C) 17
4.4.3 滑窗 19
4.4.4 BLSTM 19
4.4.5 全连接 19
4.4.6 text proposals 19
4.4.7 文本线构造 20
4.5 文本识别 20
4.5.1 densenet 20
4.5.2 CTC 21
5 实验结果 22
5.1 数据来源 22
5.2 软件硬件环境 22
5.3 判断标准 23
5.4 CTPN在ICDAR 2011、ICDAR 2013、ICDAR 2015库的检测结果 24
5.5 检测识别结果样例 24
5.6检测识别结果分析 25
6 总结 26
6.1 总结 26
6.2 展望 26
致谢...................................................................................................................................28
参考文献...........................................................................................................................29














  全套毕业设计论文现成成品资料请咨询微信号:biyezuopin QQ:2922748026     返回首页 如转载请注明来源于www.biyezuopin.vip  

                 

打印本页 | 关闭窗口
本类最新文章
基于Python的在线自主考试系 基于腾讯云的个人知识库管理系统 基于Android的酒店预定系统
基于matlab变频器控制交流电 基于微信小程序的家校联动平台管理 基于时频分析与自适应滤波技术的多
| 关于我们 | 友情链接 | 毕业设计招聘 |

Email:biyeshejiba@163.com 微信号:biyezuopin QQ:2922748026  
本站毕业设计毕业论文资料均属原创者所有,仅供学习交流之用,请勿转载并做其他非法用途.如有侵犯您的版权有损您的利益,请联系我们会立即改正或删除有关内容!