设计 任务书 文档 开题 答辩 说明书 格式 模板 外文 翻译 范文 资料 作品 文献 课程 实习 指导 调研 下载 网络教育 计算机 网站 网页 小程序 商城 购物 订餐 电影 安卓 Android Html Html5 SSM SSH Python 爬虫 大数据 管理系统 图书 校园网 考试 选题 网络安全 推荐系统 机械 模具 夹具 自动化 数控 车床 汽车 故障 诊断 电机 建模 机械手 去壳机 千斤顶 变速器 减速器 图纸 电气 变电站 电子 Stm32 单片机 物联网 监控 密码锁 Plc 组态 控制 智能 Matlab 土木 建筑 结构 框架 教学楼 住宅楼 造价 施工 办公楼 给水 排水 桥梁 刚构桥 水利 重力坝 水库 采矿 环境 化工 固废 工厂 视觉传达 室内设计 产品设计 电子商务 物流 盈利 案例 分析 评估 报告 营销 报销 会计
 首 页 机械毕业设计 电子电气毕业设计 计算机毕业设计 土木工程毕业设计 视觉传达毕业设计 理工论文 文科论文 毕设资料 帮助中心 设计流程 
垫片
您现在所在的位置:首页 >>计算机毕业设计 >> 文章内容
                 
垫片
   我们提供全套毕业设计和毕业论文服务,联系微信号:biyezuopin QQ:2922748026   
基于项目协同过滤的电子商务推荐系统设计与实现 毕业论文+初稿+二稿+三稿+任务书+开题报告+答辩PPT+ASP.NET源码及数据库文件+知网文献资料
文章来源:www.biyezuopin.vip   发布者:毕业作品网站  

摘  要
随着Internet的普及以及网上购物的诸多优点,使得网上购物越来越受认可。电子商务以其令人难以置信的速度蓬勃发展,已经成为当今互联网IT产业的经济增长点。但是,不仅仅是用户数量与日俱增,同时存在大量的有用,没用的信息充斥着整个电子商务领域。如何从海量的信息中,寻找到我们想要的信息,已经成为一个重要的问题。推荐系统就是处理该问题的重要途径。一个好的电子商务网站除了基本的商品浏览、搜索、购买和评价功能外,还应具备商品推荐的功能,这可以向用户推荐个性化的商品,解决用户难以查找信息的难题,同时可以提高电子商务网站的交易量。
本文分析了项目协同过滤算法的原理及实现步骤,并在此之上设计和实现了一个基于项目协同过滤的电子商务推荐系统。主要工作内容如下:
对网络开放的数据集MovieLens进行分析,并将数据存储到SQL Server数据库对应的表中;
根据用户的评分信息,利用余弦相似性的计算方法计算物品之间的相似度,进而根据用户历史的评分信息和相似度表来计算得出用户对物品的兴趣程度信息,最后根据不同的用户形成不同的推荐结果;
根据前面算法的实现,运用.NET WEB API以及C#等相关技术设计实现了简要的推荐系统;
根据MovieLens数据集的信息进行算法的性能测试以及对推荐系统做出系统测试,测试推荐效果;
最后对本次基于项目协同过滤的电子商务推荐系统的开发做了工作总结,并对未来的发展做了展望。
关键词: 项目协同过滤;推荐系统;智能电子商务;ASP.NET WEB API
ABSTRACT
With the popularity of the Internet, as well as the many benefits of shopping online makes online shopping increasingly recognized. E-commerce booming with incredible speed and it has become today's Internet IT industry's economic growth point. However, not only the number of users is increasing, while there is a lot of useful and useless information flooded the whole area of e-commerce. How to find out information that we wanted from a large amount of information has become an important issue. Recommendation systems are an important approach to solve the problem. A good e-commerce website in addition to the basic functions of goods for browse, search, purchase, and evaluate, should also have the recommendation feature, which allows recommending personalized products to users, solving the problem of difficult for users to find information, as well as increase the volume of e-commerce website.
This paper analyses the principle and realization of procedure of Item-based Collaborative Filtering Algorithms, and on the basic of that, design and implementation an e-commerce recommendation system based on Item-based Collaborative Filtering. The major work contents are as follows:
1) Analyze MovieLens data sets open to the network, and store the data into the SQL Server database that corresponds to the table;
2) Based on users comments, using the cosine similarity algorithm calculate the similarity between the goods, and then calculate the degree of users’ interest in goods by the history comments and similarity, finally it comes out with different recommendations for different users.
3) Based on the previous method of using. NET WEB API as well as related technologies likes c #, design and implementation a concise recommender system;
4) According to the information from MovieLens data sets to test the performance of Algorithms, to test the recommendation system for recommendation effects as well.
5) Finally, makes a summary of this development of e-commerce recommendation system, which based on Item-based Collaborative Filtering Algorithms, and outlook the future of it.
Key words:Item-Based Collaborative Filtering;Recommended System;Intelligent E-Commerce;ASP.NET WEB API
目 录
摘  要 1
ABSTRACT 2
第一章 绪论 5
1.1研究背景与意义 6
1.1.1 研究背景 6
1.1.2 设计推荐系统的意义 7
1.2 国内外研究现状 7
1.3 本文章节安排 8
第二章 电子商务推荐系统介绍 9
2.1电子商务推荐系统的概念 9
2.2电子商务推荐系统的组成 9
2.3推荐系统的分类 11
第三章 系统架构与设计 11
3.1推荐系统的需求 11
3.2推荐系统功能描述 12
3.3 推荐系统结构设计与组成 12
3.3.1 系统结构 12
3.3.2 系统模型 13
3.3.3 系统数据库表关系图 14
3.4 推荐系统核心算法设计 15
3.4.1 项目协同过滤算法概述 15
3.4.2数据集MovieLens 16
3.4.3算法原理与实现步骤 17
第四章 推荐系统实现 19
4.1 系统实现环境及相关技术介绍 19
4.1.1 ASP.NET Web API概述 19
4.1.2 系统使用.NET  WEB API概述 20
4.1.3系统开发平台 VS2013 21
4.1.4数据库平台 SQL Server 2008 R2 21
4.1.5C# 22
4.2前台界面实现 22
4.2.1 推荐系统的登录界面 22
4.2.2 推荐结果界面 23
4.3 后端功能代码实现 23
4.4后台数据库实现 26
4.5 核心算法实现 27
第五章 系统测试、运行与使用 30
5.1核心算法结果分析 30
5.1.1核心算法运行结果 30
5.1.2核心算法评测指标 31
5.2 推荐系统结果测试 33
5.2.1 系统测试概述 33
5.2.2 对本推荐系统的测试 33
5.3 推荐系统的使用说明 35
第六章 总结与展望 35
6.1 本文的主要工作总结 35
6.2 进一步的研究方向 36
参 考 文 献 37
后  记 40































  全套毕业设计论文现成成品资料请咨询微信号:biyezuopin QQ:2922748026     返回首页 如转载请注明来源于www.biyezuopin.vip  

                 

打印本页 | 关闭窗口
本类最新文章
基于Python的在线自主考试系 基于腾讯云的个人知识库管理系统 基于Android的酒店预定系统
基于matlab变频器控制交流电 基于微信小程序的家校联动平台管理 基于时频分析与自适应滤波技术的多
| 关于我们 | 友情链接 | 毕业设计招聘 |

Email:biyeshejiba@163.com 微信号:biyezuopin QQ:2922748026  
本站毕业设计毕业论文资料均属原创者所有,仅供学习交流之用,请勿转载并做其他非法用途.如有侵犯您的版权有损您的利益,请联系我们会立即改正或删除有关内容!