设计 任务书 文档 开题 答辩 说明书 格式 模板 外文 翻译 范文 资料 作品 文献 课程 实习 指导 调研 下载 网络教育 计算机 网站 网页 小程序 商城 购物 订餐 电影 安卓 Android Html Html5 SSM SSH Python 爬虫 大数据 管理系统 图书 校园网 考试 选题 网络安全 推荐系统 机械 模具 夹具 自动化 数控 车床 汽车 故障 诊断 电机 建模 机械手 去壳机 千斤顶 变速器 减速器 图纸 电气 变电站 电子 Stm32 单片机 物联网 监控 密码锁 Plc 组态 控制 智能 Matlab 土木 建筑 结构 框架 教学楼 住宅楼 造价 施工 办公楼 给水 排水 桥梁 刚构桥 水利 重力坝 水库 采矿 环境 化工 固废 工厂 视觉传达 室内设计 产品设计 电子商务 物流 盈利 案例 分析 评估 报告 营销 报销 会计
 首 页 机械毕业设计 电子电气毕业设计 计算机毕业设计 土木工程毕业设计 视觉传达毕业设计 理工论文 文科论文 毕设资料 帮助中心 设计流程 
垫片
您现在所在的位置:首页 >>文科论文 >> 文章内容
                 
垫片
   我们提供全套毕业设计和毕业论文服务,联系微信号:biyezuopin QQ:2922748026   
DDS and converter form signal generator
文章来源:www.biyezuopin.vip   发布者:毕业作品网站  

Edited by Bill Travis

Colm Slattery, Analog Devices, Limerick, Ireland -- EDN , 2/20/2003

Many applications require low-frequency signal generators that can deliver high-performance, high-resolution signals. This Design Idea presents a circuit that generates frequencies of 0 to 1 MHz. Sinusoidal, triangular, and square-wave outputs are available. You can achieve frequency resolution of better than 0.1 Hz and phase resolution of better than 0.1°; thus, you can program exact coherent frequencies. This feature is useful in digital modulation and frequency-tuning applications. The circuit uses the ADµC831 and AD9834 to generate the required frequencies (Figure 1). You can program the microcontroller from either a PC or a Unix-based workstation. You then program the AD9834 using a three-wire serial interface via the microcontroller. The interface word is 16 bits long.

Figure 1

You can program the AD9834 to provide sinusoidal, triangular, and square-wave outputs using the DDS (direct-digital-synthesis) architecture. The chip operates as an NCO (numerically controlled oscillator) using an on-chip, 28-bit phase accumulator, sine-coefficient ROM, and a 10-bit D/A converter. You typically consider sine waves in terms of their magnitude form, A(t)=sin(ωt). The amplitude is nonlinear and is, therefore, difficult to generate. The angular information, on the other hand, is perfectly linear. That is, the phase angle rotates through a fixed angle for each unit in time. Knowing that the phase of a sine wave is linear, and, given a reference interval (clock period), you can determine the phase rotation for that period: ΔPhase=ω dt; ω=ΔPhase/dt=2πf, and f=(ΔPhase×fMCLK)/(2π), where dt=1/fMCLK, and fMCLK is the master clock.

Using this formula, you can generate output frequencies, knowing the phase and master-clock frequency. The phase accumulator provides the 28-bit linear phase. The amplitude coefficients of the output sine wave are stored in digital format in the sine-coefficient ROM. The DAC converts the sine wave to the analog domain. If you bypass the ROM, the AD9834 delivers triangular waveforms instead of sinusoidal waveforms. A square-wave output is also available on the part. As shown in Figure 1, the sinusoidal/ triangular output waveforms are available on the IOUT pin (Pin 19); and the square wave output is available on the SIGN_BIT_OUT pin (Pin 16). You program the DDS by writing to the frequency registers. The analog output from the part is then: fOUT=fMCLK/228×(frequency-register word).

The outputs of the DDS have 28-bit resolution, so effective frequency steps on the order of 0.1 Hz are possible to a maximum of approximately 1 MHz.  Two phase registers are available that allow 12-bit phase resolution. These registers phase-shift the signal by: Phase

shift=2π/4096×(phase-register word).

A 50-MHz crystal oscillator provides the reference clock for the DDS. The output stage of the DDS is a current-output DAC loaded by an external resistor. A 200Ω resistor generates the required peak-to-peak voltage range. The output is ac-coupled through capacitor C1. The MicroConverter contains two on-chip, 12-bit DACs. DAC1 varies the current through R5, adjusting the full-scale current of the DDS via the FSADJUST pin. The equation to control the full-scale current of the DDS DAC is: IOUT (full-scale)=18×I×R5.

DAC0, the internal reference of the MicroConverter, and op amp 2 allow for offset control of the output voltage of the DDS. You can program this dc offset to ±10V at 10-bit resolution. When R1=R2 and the gain of op amp 2=8, then the output of op amp 2 is: VOUT=(DAC output–(VREF/2))×8, yielding a ±10V range.

Resistors R6 through R9 allow for control of gain through op amp 3. The gain of the op amp is a function of resistor switching, which you enable using the RDRIVE pin available on the MicroConverter. This operation allows for an effective programmable-output amplitude of approximately ±10V p-p. Thus, the circuit allows for programmable sinusoidal and triangular waves, including dc offsets, and the ability to set peak-to-peak amplitude of approximately ±10V. The square wave output on the SIGN_BIT_OUT pin has 0 to 5V amplitude. For low-frequency operation, a lowpass filter normally serves to filter reference-clock frequencies, spurs, and other images. For

applications in which the output signal needs amplification, you should use a narrowband filter to filter out unwanted noise before the gain stage. A third-order filter would be good enough to remove most of the unwanted noise. Applications for this circuit range from signal-waveform generation to digital modulation. You can use the system in frequency-sweeping and -scanning applications and in resonance applications that use the frequency as an excitation signal to determine circuit resonance. Another useful application is as a reference oscillator for a DLL system.

  全套毕业设计论文现成成品资料请咨询微信号:biyezuopin QQ:2922748026     返回首页 如转载请注明来源于www.biyezuopin.vip  

                 

打印本页 | 关闭窗口
本类最新文章
The Honest Guide Sonar Target Cla Process Planning
Research on the Sustainable Land UniCycle: An And
| 关于我们 | 友情链接 | 毕业设计招聘 |

Email:biyeshejiba@163.com 微信号:biyezuopin QQ:2922748026  
本站毕业设计毕业论文资料均属原创者所有,仅供学习交流之用,请勿转载并做其他非法用途.如有侵犯您的版权有损您的利益,请联系我们会立即改正或删除有关内容!