3.完成论文(设计)的条件、方法及措施,包括实验设计、调研计划、资料收集、参考文献等内容:
1.软件环境:Windows10 x64,工具为ycharm-Python3.9。将采用的第三方包numpy、pandas、matplotlib、seaborn、scikit-learn 。
2..学习数据分析与挖掘的知识,对这方面有一定的了解。对预测分析的建模进行深入学习。
3.收集参考资料,了解建模方面应该注意的相关问题,记录设计过程中遇到的问题及解决方法。
4.向有该方面设计经验的同学讨论研究中出现的问题,同时也可以向网上查找资料,向相关论坛请教,汲取一些经验,遇到解决不了的问题可以向指导老师求助。
参考文献:
[1]刘旭.基于粗集和神经网络的销售预测研究[D].河北工业大学,2007.
[2]孔志周.基于小波网络的数据挖掘技术及其在销售预测中的应用[D].湖南大学,2004.
[3] Peterson R T.Forecasting practices in the retail industry[J ].Journal of BusinessForecasting,1993,14:11-12.
[4] Agrawal D,Schorling C.Market share forecasting: An empirical comparison ofartificial neural networks and multinomial logit model[J]. Journal of Retailing,1997,72(4):383-407.
[5]吴倩.基于关联规则的零售业 CRM的设计和实现[D].华东师范大学,2011.
[6]戴亮,孟晶.零售业销售预测方法[J].《商场现代化》,2011,15(1):83-85.
[7]曾隽.商业银行个人客户价值评价问题研究:重庆:西南大学,2011.
[8]叶菲.客户关系管理中客户需求预测与识别的研究与实现:上海:上海交通大学,2013.
[9]陈宏毅.客户价值分析之随机模型建立及实证:台北:国立台湾大学,2004
[10] Frank C,Sztandera L, Vemulapali B.A fuzzy forecasting model for women's casualsales[J ].National Textile Center Annual Report, 2004,(NTC Project: SO1-PH10).
[11] Kuo R J, Xue K C. A decision support system for sales forecasting through fuzzyneural networks with asymmetric fuzzy weights[J]. Decision Support System, 1998,24(2):105-126.
[12] Au K F,Choi T M, Yu Y. Fashion retail forecasting by evolutionary neuralnetworks[]. International Journal of Production Economics, 2008,114(2): 615-630
[13] Choi T M,Yu Y,Au K F. A hybrid SARIMA wavelet transform method for salesforecasting[J]. Decision Support System,2011,51(1):130-140.
[14] Sun Z L, Choi T M,Au K F. Sales forecasting using extreme learning machine with applications in fashion retailing[J]. Decision Support Systems, 2008,46(1):411-419.
[15] Doganis P,Alexandridis A,Patrinos P. Time series sales forecasting for shortshelf-life food products based on artificial neural networks and evolutionary computing[J].Journal of Food Engineering, 2006,75(2): 196-204.
|